化工进展 ›› 2018, Vol. 37 ›› Issue (07): 2672-2685.DOI: 10.16085/j.issn.1000-6613.2017-1350

• 材料科学与技术 • 上一篇    下一篇

溶液法制备有机-无机杂化钙钛矿薄膜的研究进展

韦慧1,2, 汤洋1, 尤晖2   

  1. 1 北京市纳米结构薄膜太阳能电池工程技术研究中心, 北京低碳清洁能源研究所, 北京 102211;
    2 中国科学院合肥智能机械研究所, 安徽 合肥 230031
  • 收稿日期:2017-07-03 修回日期:2017-08-01 出版日期:2018-07-05 发布日期:2018-07-05
  • 通讯作者: 汤洋,工程师,研究方向为太阳能电池。
  • 作者简介:韦慧(1987-),女,博士研究生。
  • 基金资助:
    国家自然科学基金(61404007)和北京市优秀人才培养资助计划(2015000021223ZK38)项目。

Progress of the solution method in organic-inorganic hybrid perovskite fabrication

WEI Hui1,2, TANG Yang1, YOU Hui2   

  1. 1 Beijing Engineering Research Center of Nano-structured Thin Film Solar Cell, National Institute of Clean-and-Low-Carbon Energy, Beijing 102209, China;
    2 Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, Anhui, China
  • Received:2017-07-03 Revised:2017-08-01 Online:2018-07-05 Published:2018-07-05

摘要: 有机-无机杂化钙钛矿(简称钙钛矿)太阳能电池在近年取得了重大突破,实验室小面积器件的光电转换效率从最初2009年的3.8%提升至现今的22.1%。本文从钙钛矿材料的物化性能、钙钛矿太阳能电池的结构、钙钛矿薄膜的制备方法等方面全面分析了钙钛矿太阳能电池的优势和不足。首先简要回顾了钙钛矿太阳能电池问世以来几个重要发展历程和主流电池器件结构的演变,着重讨论了吸光层钙钛矿薄膜的制备方法,包括一步溶液法、分步旋涂-浸渍法、两步旋涂法、气相沉积法,分析了影响钙钛矿成膜的关键因素、微观形貌控制的工艺技术,对溶剂的选择、溶质成分的调控(包括铅源、各类添加剂的选择)以及钙钛矿结晶的粗化做了详细探讨。指出今后的工作重点在于如何精确控制钙钛矿薄膜的化学成分,提高可重复性和良品率;加强器件工作机理、成膜机理的研究;着眼于大面积器件的制备;提高器件的稳定性及开发环境友好型无铅或少铅电池。

关键词: 制备, 微观形貌调控, 太阳能, 器件效率, 界面

Abstract: In the past few years, the development of organic-inorganic hybrid perovskite solar cells (perovskite solar cells) grew rapidly, the power-conversion efficiency(PCE) in small area devices had been increased from 3.8% to 22.1%. Herein, the advantages and disadvantages of the perovskite solar cells in terms of physicochemical properties, structures, and the preparation methods of perovskite films are reviewed thoroughly in this paper. At first, the developments of perovskite solar cells and the structural evolution of the mainstream devices were briefly introduced, emphatically described the fabrication methods of the light-absorbing layer perovskite films, which were prepared by one-step spin-coating processing, two-step sequential deposition(in situ dipping method and two-step spin-coating deposition), and dual-source vapor deposition. Then, the key factors of the perovskite film formation and the micro-topography control technology were introduced and discussed, especially focused on the effects of growth of large crystals adjusted by solvents, compositions of precursors, mixed lead salts, additives, and coarsening of crystal growth on the efficiency of the perovskite solar cells. Finally, existing problems and future work were summarized, which includes precisely controlling the chemical composition of perovskite film, overcoming reproducibility issues and increase product yield, understanding perovskite crystallization process and work mechanism of device, preparing large-area perovskite thin films and perovskite solar modules, improving the long-term stability of the device, and developing environmentally friendly lead-free or lead-less perovskite solar cells.

Key words: preparation, morphology control, solar energy, power-conversion efficiency, interface

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn