化工进展 ›› 2018, Vol. 37 ›› Issue (04): 1276-1286.DOI: 10.16085/j.issn.1000-6613.2017-2483
林文珠, 曹嘉豪, 方晓明, 张正国
收稿日期:
2017-12-01
修回日期:
2017-12-27
出版日期:
2018-04-05
发布日期:
2018-04-05
通讯作者:
张正国,教授,博士生导师,研究方向为传热强化。
作者简介:
林文珠(1993-),女,博士研究生,研究方向为传热强化。E-mail:1049850449@qq.com。
基金资助:
LIN Wenzhu, CAO Jiahao, FANG Xiaoming, ZHANG Zhengguo
Received:
2017-12-01
Revised:
2017-12-27
Online:
2018-04-05
Published:
2018-04-05
摘要: 管壳式换热器作为工程中应用广泛的换热器,具有结构坚固、适应性强、能够利用和回收热能等优点。在追求高能源利用效率的背景下,换热器的强化传热得到广泛关注。本文重点阐述了管壳式换热器的强化传热相关研究进展,包括换热器本身几何结构的优化、换热流体的热物性改善以及多种强化传热技术结合的复合强化传热方法。其中几何结构优化主要包括改变换热管管型、增加管内插入物以及壳程中的隔板优化研究等。换热流体热物性改善包括纳米流体提高热导率、潜热型热流体提高比热容等。复合强化传热是将多种强化方法结合,可弥补单一方法的不足,以获得更高强化传热效果。最后指出管壳式换热器强化传热未来的研究方向在于持续开发强化传热管、制备稳定的纳米流体及潜热型流体以及多种强化方式复合提高强化效果。
中图分类号:
林文珠, 曹嘉豪, 方晓明, 张正国. 管壳式换热器强化传热研究进展[J]. 化工进展, 2018, 37(04): 1276-1286.
LIN Wenzhu, CAO Jiahao, FANG Xiaoming, ZHANG Zhengguo. Research progress of heat transfer enhancement of shell-and-tube heat exchanger[J]. Chemical Industry and Engineering Progress, 2018, 37(04): 1276-1286.
[1] 齐洪洋,高磊,张莹莹,等. 管壳式换热器强化传热技术概述[J]. 压力容器,2012,29(7):73-78. QI H Y,GAO L,ZHANG Y Y,et al. The overview of heat transfer enhancement of shell and tube heat exchangers[J]. Pressure Vessel Technology,2012,29(7):73-78. [2] SALAHUDDIN U,BILAL M,EJAZ H. A review of the advancements made in helical baffles used in shell and tube heat exchangers[J]. International Communications in Heat and Mass Transfer,2015,67:104-108. [3] SHEIKHOLESLAMI M,GORJI-BANDPY M,GANJI D D. Review of heat transfer enhancement methods:focus on passive methods using swirl flow devices[J]. Renewable & Sustainable Energy Reviews,2015,49:444-469. [4] LIU S,SAKR M. A comprehensive review on passive heat transfer enhancements in pipe exchangers[J] Renewable and Sustainable Energy Reviews,2013,19:64-81. [5] 杨程,李奇军,时立民,等. 管壳式换热器强化传热技术研究综述[J]. 天水师范学院学报,2015,35(2):60-65. YANG C,LI Q J,SHI L M,et al. Research progress of heat transfer enhancement of shell-and-tube heat exchanger[J]. Journal of Tianshui Normal University,2015,35(2):60-65. [6] 方玉堂,万伟军. 潜热型功能热流体的研究进展[J]. 材料导报,2009,23(15):108-111. FANG Y T,WANG W J. Research progress of latent heat fluid[J] Materials Review,2009,23(15):108-111. [7] 李志安,任克华,宿痴. 波纹管换热器设计标准介绍及相关问题的探讨[J]. 压力容器,2007,24(4):61-64. LI Z A,REN K H,SU C. Introduction of design standard of bellows heat exchanger and discussion of related problems[J]. Pressure Vessel Technology,2007,24(4):61-64. [8] 李洪亮,关延军,刘嘉渝,等. 新型外螺纹横纹管管外强化传热分析[J]. 化工科技,2016,24(6):50-55. LI H L,GUANG Y J,LIU J Y,et al. Heat transfer analysis of a new type of external thread tubular tube[J]. Science & Technology in Chemical Industry,2016,24(6):50-55. [9] 杨胜,张颂,张莉,等. 螺旋扁管强化传热技术研究进展[J]. 冶金能源,2010,29(3):17-22. YANG S,ZHANG S,ZHANG L,et al. Research progress of spiral flat tube reinforced heat transfer technology[J]. Energy for Metallurgical Industry,2010,29(3):17-22. [10] 焦凤,邓先和. 矩形自支撑缩放管换热器强化传热的结构优化[J]. 化工学报,2013,64(7):2376-2385. JIAO F,DENG X H. Structure optimization of reinforced heat transfer in rectangular self supporting shrink tubing heat exchanger[J]. CIESC Journal,2013,64(7):2376-2385. [11] KUMAR A,PRASAD B N. Investigation of twisted tape inserted solar water heaters-heat transfer,friction factor and thermal performance results[J]. Renewable Energy,2000,19(3):379-398. [12] EIAMSA-ARD S,SOMKLEANG P,NUNTADUSIT C,et al. Heat transfer enhancement in tube by inserting uniform/non-uniform twisted-tapes with alternate axes:effect of rotated-axis length[J] Applied Thermal Engineering,2013,54(1):289-309. [13] KAPSE A A,DONGARWAR P R,GAWANDE R R,et al. Heat transfer and pressure drop characteristics in a circular tube fitted with combined twisted tape and helical screw tape insert[J]. International Journal of Computer Applications,2015,3:22-25. [14] THIANPONG C,EIAMSA-ARD P,EIAMSA-ARD S. Heat transfer and thermal performance characteristics of heat exchanger tube fitted with perforated twisted-tapes[J]. Heat & Mass Transfer,2012,48(6):881-892. [15] EIAMSA-ARD S,PROMVONGE P. Enhancement of heat transfer in a tube with regularly-spaced helical tape swirl generators[J]. Solar Energy,2005,78(4):483-494. [16] GUNES S,OZCEYHAN V,BUYUKALACA O. Heat transfer enhancement in a tube with equilateral triangle cross sectioned coiled wire inserts[J]. Experimental Thermal & Fluid Science,2010,34(6):684-691. [17] PROMVONGE P. Thermal augmentation in circular tube with twisted tape and wire coil turbulators[J]. Energy Conversion & Management,2008,49(11):2949-2955. [18] EIAMSA-ARD S,YONGSIRI K,NANAN K,et al. Heat transfer augmentation by helically twisted tapes as swirl and turbulence promoters[J]. Chemical Engineering & Processing Process Intensification,2012,60(60):42-48. [19] NAPHON P. Heat transfer and pressure drop in the horizontal double pipes with and without twisted tape insert[J]. International Communications in Heat & Mass Transfer,2006,33(2):166-175. [20] SARADA S N,RAJU A S R,RADHA K K,et al. Enhancement of heat transfer using varying width twisted tape inserts[J]. International Journal of Engineering,Sciece and Technology,2010,2(6):107-118. [21] 韩继广,吴新,周翼,等. 管内插入扭带及螺旋线圈的传热与阻力特性实验研究[J]. 热能动力工程,2012,27(4):434-438. HAN J G,WU X,ZHOU Y,et al. Experimental study on heat transfer and resistance characteristics of tube and helical coil inserted into tube[J]. Journal of Engineering for Thermal Energy and Power,2012,27(4):434-438. [22] AKHAVAN-BEHABADI M A,KUMAR R,SALIMPOUR M R,et al. Pressure drop and heat transfer augmentation due to coiled wire inserts during laminar flow of oil inside a horizontal tube[J]. International Journal of Thermal Sciences,2010,49(2):373-9. [23] MARTINEZ D S,GARC A A,SOLANO J P,et al. Heat transfer enhancement of laminar and transitional Newtonian and non-Newtonian flows in tubes with wire coil inserts[J]. International Journal of Heat and Mass Transfer,2014,76:540-8. [24] GUNES S,MANAY E,SENYIGIT E,et al. A Taguchi approach for optimization of design parameters in a tube with coiled wire inserts[J]. Applied Thermal Engineering,2011,31(14/15):2568-2577. [25] PONGSOI P,PIKULKAJORN S,WONGWISES S. Heat transfer and flow characteristics of spiral fin-and-tube heat exchangers:a review[J]. International Journal of Heat and Mass Transfer,2014,79:417-431. [26] LIU X,YU J,YAN G. A numerical study on the air-side heat transfer of perforated finned-tube heat exchangers with large fin pitches[J]. International Journal of Heat and Mass Transfer,2016,100:199-207. [27] SYED K S,ISHAQ M,IQBAL Z,et al. Numerical study of an innovative design of a finned double-pipe heat exchanger with variable fin-tip thickness[J]. Energy Conversion and Management,2015,98:69-80. [28] IQBAL Z,SYED K S,ISHAQ M. Optimal fin shape in finned double pipe with fully developed laminar flow[J]. Applied Thermal Engineering,2013,51(1/2):1202-1223. [29] 秦朋,凌子夜,徐涛,等. R407C在花瓣型翅片管与低肋管外的冷凝传热性能对比[J]. 工程热物理学报,2013(12):2347-2350. QIN P,LING Z Y,XU T,et al. The comparsion between R407C in the petal-shaped fin tube and low-cost tube condensation heat transfer performance[J]. Journal of Engineering Thermophysics,2013(12):2347-2350. [30] EL MAAKOUL A,LAKNIZI A,SAADEDDINE S,et al. Numerical comparison of shell-side performance for shell and tube heat exchangers with trefoil-hole,helical and segmental baffles[J]. Applied Thermal Engineering,2016,109:175-185. [31] WANG Q,CHEN G,CHEN Q,et al. Review of improvements on shell-and-tube heat exchangers with helical baffles[J]. Heat Transfer Engineering,2010,31(10):836-853. [32] LUTCHA J,NEMCANSKY J. Performance improvement of tubular heat exchangers by helical baffles[J]. Chemical Engineering Research & Design,1990,68(3):263-270. [33] ZHANG J F,GUO S L,LI Z Z,et al. Experimental performance comparison of shell-and-tube oil coolers with overlapped helical baffles and segmental baffles[J]. Applied Thermal Engineering,2013,58(1/2):336-343. [34] PENG B,WANG Q W,ZHANG C,et al. An experimental study of shell-and-tube heat exchangers with continuous helical baffles[J]. Journal of Heat Transfer,2007,129(10):1425. [35] LEI Y G,HE Y L,CHU P,et al. Design and optimization of heat exchangers with helical baffles[J]. Chemical Engineering Science,2008,63(17):4386-4395. [36] ZHANG J F,HE Y L,TAO W Q. 3D numerical simulation on shell-and-tube heat exchangers with middle-overlapped helical baffles and continuous baffles-Part I:Numerical model and results of whole heat exchanger with middle-overlapped helical baffles[J]. International Journal of Heat and Mass Transfer,2009,52(23):5371-5380. [37] ZHANG J F,HE Y L,TAO W Q. 3D numerical simulation on shell-and-tube heat exchangers with middle-overlapped helical baffles and continuous baffles-Part Ⅱ:Simulation results of periodic model and comparison between continuous and noncontinuous helical baffles[J]. International Journal of Heat & Mass Transfer,2009,52(23/24):5381-5389. [38] CHEN Y P,SHENG Y J,DONG C,et al. Numerical simulation on flow field in circumferential overlap trisection helical baffle heat exchanger[J]. Applied Thermal Engineering,2013,50(1):1035-1043. [39] DONG C,CHEN Y P,WU J F. Flow and heat transfer performances of helical baffle heat exchangers with different baffle configurations[J]. Applied Thermal Engineering,2015,80:328-338. [40] DONG C,CHEN Y P,WU J F. Performances of helical baffle heat exchangers with different baffle assembly configurations[J]. Canadian Journal of Chemical Engineering,2015,93(8):1500-1508. [41] DONG C,CHEN Y P,WU J F. Performance comparison of trisection helical baffle heat exchangers with different circumferential overlap sizes[J]. Chemical Engineering & Technology,2015,38(7):1277-1284. [42] TAHER F N,MOVASSAG S Z,RAZMI K,et al. Baffle space impact on the performance of helical baffle shell and tube heat exchangers[J]. Applied Thermal Engineering,2012,44:143-149. [43] HUSSEIN A M,SHARMA K V,BAKAR R A,et al. A review of forced convection heat transfer enhancement and hydrodynamic characteristics of a nanofluid[J]. Renewable and Sustainable Energy Reviews,2014,29:734-743. [44] GODSON L,RAJA B,LAL D M,et al. Enhancement of heat transfer using nanofluids-An overview[J]. Renewable & Sustainable Energy Reviews,2010,14(2):629-641. [45] PAUL G,CHOPKAR M,MANNA I,et al. Techniques for measuring the thermal conductivity of nanofluids:a review[J]. Renewable & Sustainable Energy Reviews,2010,14(7):1913-1924. [46] HUSSEIN A M,SHARMA K V,BAKAR R A,et al. A review of forced convection heat transfer enhancement and hydrodynamic characteristics of a nanofluid[J]. Renewable & Sustainable Energy Reviews,2014,29(7):734-743. [47] XUAN Y,QIANG L. Heat transfer enhancement of nanofluids[J]. International Journal of Heat & Fluid Flow,2000,21(1):58-64. [48] SOLANGI K H,KAZI S N,LUHUR M R,et al. A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids[J]. Energy,2015,89:1065-1086. [49] SAJADI A R,KAZEMI M H. Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube[J]. International Communications in Heat and Mass Transfer,2011,38(10):1474-1478. [50] SURESH S,VENKITARAJ K P,SELVAKUMAR P,et al. Effect of Al2O3-Cu/water hybrid nanofluid in heat transfer[J]. Experimental Thermal and Fluid Science,2012,38:54-60. [51] SARAFRAZ M M,HORMOZI F. Heat transfer,pressure drop and fouling studies of multi-walled carbon nanotube nano-fluids inside a plate heat exchanger[J]. Experimental Thermal and Fluid Science,2016,72:1-11. [52] HUANG D,WU Z,SUNDEN B. Effects of hybrid nanofluid mixture in plate heat exchangers[J]. Experimental Thermal and Fluid Science,2016,72:190-196. [53] FARAJOLLAHI B,ETEMAD S G,HOJJAT M. Heat transfer of nanofluids in a shell and tube heat exchanger[J]. International Journal of Heat and Mass Transfer,2010,53(1/2/3):12-17. [54] LOTFI R,RASHIDI A M,AMROLLAHI A. Experimental study on the heat transfer enhancement of MWNT-water nanofluid in a shell and tube heat exchanger[J]. International Communications in Heat and Mass Transfer,2012,39(1):108-111. [55] DELGADO M,L ZARO A,MAZO J,et al. Experimental analysis of a low cost phase change material emulsion for its use as thermal storage system[J]. Energy Conversion and Management,2015,106:201-212. [56] WANG F,LIU J,FANG X,et al. Graphite nanoparticles-dispersed paraffin/water emulsion with enhanced thermal-physical property and photo-thermal performance[J]. Solar Energy Materials and Solar Cells,2016,147:101-107. [57] SARI A,ALKAN C,KARAIPEKLI A,et al. Microencapsulated n-octacosane as phase change material for thermal energy storage[J]. Solar Energy,2009,83(10):1757-1763. [58] ZHANG H,WANG X,WU D. Silica encapsulation of N-octadecane via sol-gel process:a novel microencapsulated phase-change material with enhanced thermal conductivity and performance[J]. Journal of Colloid and Interface Science,2010,343(1):246-255. [59] 吴玉庭,任楠,马重芳. 熔融盐显热蓄热技术的研究与应用进展[J]. 储能科学与技术,2013,2(6):586-592. WU Y T,REN N,MA C F. Research and application progress of molten salt sensible heat accumulation technology[J]. Energy Storage Science and Technology,2013,2(6):586-592. [60] XIAO P,GUO L,ZHANG X. Investigations on heat transfer characteristic of molten salt flow in helical annular duct[J]. Applied Thermal Engineering,2015,88:22-32. [61] PENG Q,DING J,WEI X,et al. The preparation and properties of multi-component molten salts[J]. Applied Energy,2010,87(9):2812-2817. [62] LIU J,WANG F,ZHANG L,et al. Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications[J]. Renewable Energy,2014,63:519-523. [63] LIU J,YE Z,ZHANG L,et al. A combined numerical and experimental study on graphene/ionic liquid nanofluid based direct absorption solar collector[J]. Sol. Energy. Mater. Sol. Cells,2015,136:177-186. [64] LIU J,XU C,CHEN L,et al. Preparation and photo-thermal conversion performance of modified graphene/ionic liquid nanofluids with excellent dispersion stability[J]. Sol Energy Mater Sol Cells,2017,170:219-232. [65] LIU J,CHEN L,FANG X,et al. Preparation of graphite nanoparticles-modified phase change microcapsules and their dispersed slurry for direct absorption solar collectors[J]. Sol. Energy Mater. Sol. Cells,2017,159:159-166. [66] PONWEISER K,LINZER W,MALINOVEC M. Performance comparison between wire coil and twisted tape inserts[J]. Journal of Enhanced Heat Transfer,2004,11(4):359-370. [67] EIAMSA-ARD S,NIVESRANGSAN P,CHOKPHOEMPHUN S,et al. Influence of combined non-uniform wire coil and twisted tape inserts on thermal performance characteristics[J]. International Communications in Heat & Mass Transfer,2010,37(7):850-856. [68] SAHA S K,BARMAN B K,BANERJEE S. Heat transfer enhancement of laminar flow through a circular tube having wire coil inserts and fitted with center-cleared twisted tape[J]. Journal of Thermal Science & Engineering Applications,2012,4(3):031003. [69] MATANI A G,DAHAKE S A,PUBLICATION I. Experimental study of heat transfer enhancement in a pipe using twisted tapes and wire coils[J]. International Journal of Mechanical Engineering and Technology,2013,4(2):100-111. [70] DARZI A A R,FARHADI M,SEDIGHI K,et al. Turbulent heat transfer of Al2O3-water nanofluid inside helically corrugated tubes:numerical study[J]. International Communications in Heat and Mass Transfer,2013,41:68-75. [71] CHANDRASEKAR M,SURESH S,CHANDRA B A. Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid in a circular pipe under laminar flow with wire coil inserts[J]. Experimental Thermal and Fluid Science,2010,34(2):122-130. [72] BAHIRAEI M,HANGI M,SAEEDAN M. A novel application for energy efficiency improvement using nanofluid in shell and tube heat exchanger equipped with helical baffles[J]. Energy,2015,93:2229-2240. [73] 谭允开,何振斌,张正国. 非牛顿纳米流体在螺旋隔板翅片管换热器与弓形隔板光滑管换热器壳程的换热性能对比[J]. 工程热物理学报,2016(4):818-824. TAN Y K,HE Z B,ZHANG Z G. Comparison of heat transfer performance of non-Newtonian nanofluids in helical baffle fin-tube heat exchangers and segmental baffle heat exchanger[J]. Journal of Engineering Thermophysics,2016(4):818-824. [74] HE Z,FANG X,ZHANG Z,et al. Numerical investigation on performance comparison of non-Newtonian fluid flow in Vertical heat exchangers combined helical baffle with elliptic and circular tubes[J]. Applied Thermal Engineering,2016,100:84-97. [75] TIAN J,HE Z,XU T,et al. Rheological property and thermal conductivity of multi-walled carbon nano-tubes-dispersed non-Newtonian nano-fluids based on an aqueous solution of carboxymethyl cellulose[J]. Experimental Heat Transfer,2015,29(3):378-391. |
[1] | 张岱凌, 丁玉梅, 左夏华, 黎昊为, 杨卫民, 阎华, 安瑛. 废弃墨粉纳米流体的光热特性[J]. 化工进展, 2023, 42(9): 4791-4798. |
[2] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[3] | 郭文杰, 翟玉玲, 陈文哲, 申鑫, 邢明. Al2O3-CuO/水混合纳米流体对流传热性能及热经济性分析[J]. 化工进展, 2023, 42(5): 2315-2324. |
[4] | 陆诗建, 刘玲, 刘滋武, 郭伯文, 俞徐林, 梁艳, 赵东亚, 朱全民. AEP-DPA-CuO相变纳米流体吸收CO2稳定性[J]. 化工进展, 2022, 41(8): 4555-4561. |
[5] | 李佩珊, 张梦辰, 李铭杰, 郑文镳, 刘敏超, 谢高艺, 徐晓龙, 刘长宇, 郏建波. 基于二维材料膜构筑纳米流体通道的研究进展[J]. 化工进展, 2022, 41(7): 3745-3757. |
[6] | 李钰璨, 胡定华, 刘锦辉. 氧化铝纳米流体液滴瞬态蒸发速率的演化特性分析[J]. 化工进展, 2022, 41(7): 3493-3501. |
[7] | 古新, 张前欣, 王超鹏, 方运阁, 李宁, 王永庆. U形导流板换热器传热和阻力性能分析[J]. 化工进展, 2022, 41(7): 3465-3474. |
[8] | 杨洪海, 张苗, 刘利伟, 周屹, 沈俊杰, 施伟刚, 尹勇. 氧化石墨烯/水脉动热管传热强化及性能预测[J]. 化工进展, 2022, 41(4): 1725-1734. |
[9] | 林清宇, 王祝, 冯振飞, 凌彪, 陈镇. 扭带结构影响管内传热与熵产的研究进展[J]. 化工进展, 2022, 41(11): 5709-5721. |
[10] | 禹言芳, 陈雅鑫, 孟辉波, 王宗勇, 吴剑华. Lightnin静态混合器内纳米流体湍流传热特性分析[J]. 化工进展, 2021, 40(S2): 30-39. |
[11] | 王英梅, 牛爱丽, 张兆慧, 展静, 张学民. 二氧化碳水合物快速生成方法研究进展[J]. 化工进展, 2021, 40(S2): 117-125. |
[12] | 林文珠, 凌子夜, 方晓明, 张正国. 相变储热的传热强化技术研究进展[J]. 化工进展, 2021, 40(9): 5166-5179. |
[13] | 马明琰, 翟玉玲, 轩梓灏, 周树光, 李志祥. 三元混合纳米流体稳定性及热性能[J]. 化工进展, 2021, 40(8): 4179-4186. |
[14] | 孟雪, 荆恒铸, 曹真真, 李红明. 基于Aspen EDR的管壳式换热器的设计[J]. 化工进展, 2019, 38(s1): 275-277. |
[15] | 臧徐忠,石尔,傅俊萍,余涛. 磁场调控磁性纳米流体流动和传热研究进展[J]. 化工进展, 2019, 38(12): 5410-5419. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |