化工进展 ›› 2018, Vol. 37 ›› Issue (04): 1287-1304.DOI: 10.16085/j.issn.1000-6613.2017-2178
赵国锋, 张智强, 朱坚, 柴瑞娟, 丁嘉, 刘晔, 路勇
收稿日期:
2017-10-25
修回日期:
2017-12-26
出版日期:
2018-04-05
发布日期:
2018-04-05
通讯作者:
路勇,教授,博士生导师,研究方向为能源化工与绿色催化。
作者简介:
赵国锋(1982-),男,博士,副研究员,研究方向为能源化工与绿色催化。E-mail:gfzhao@chem.ecnu.edu.cn。
基金资助:
ZHAO Guofeng, ZHANG Zhiqiang, ZHU Jian, CHAI Ruijuan, DING Jia, LIU Ye, LU Yong
Received:
2017-10-25
Revised:
2017-12-26
Online:
2018-04-05
Published:
2018-04-05
摘要: 具有3D非规则空隙结构的foam/fiber基体不仅导热性好、面体比更大,而且在消除径向扩散限制、涡流强化传质/传热、提高接触效率、几何构型灵活设计等方面显示出传统的规则2D空隙蜂窝和微通道结构难以企及的优势,但其高效催化功能化还面临挑战,近年来,相关的研究与开发日益受到重视且进展明显。本文综述了foam/fiber新型结构催化剂的"宏-微-纳"一体化"非涂层"构筑及其在涉及能源化工和环境催化等的典型强吸(放)热和/或高通量反应过程中的应用等方面的研究新进展,以期为诸如C1能源化工等众多反应过程中存在的强烈热/质传递限制等问题的解决,以及为满足环境催化和"模块"化工厂等对高通量、低压降等的特殊要求提供新的思路和技术支撑。
中图分类号:
赵国锋, 张智强, 朱坚, 柴瑞娟, 丁嘉, 刘晔, 路勇. 结构催化剂与反应器:新结构、新策略和新进展[J]. 化工进展, 2018, 37(04): 1287-1304.
ZHAO Guofeng, ZHANG Zhiqiang, ZHU Jian, CHAI Ruijuan, DING Jia, LIU Ye, LU Yong. Structured catalyst and reactor: new structures,new strategies and recent advances[J]. Chemical Industry and Engineering Progress, 2018, 37(04): 1287-1304.
[1] European Cluster on Catalysis. Science and technology roadmap on catalysis for Europe,July,2016. http://www.euchems.eu/roadmap-on-catalysis-for-europe. [2] PANGARKAR K,SCHILDHAUER T J,VAN OMMEN J R,et al. Structured psackings for multiphase catalytic reactors[J]. Industrial & Engineering Chemistry Research,2008,47(10):3720-3751. [3] KAPTEIJN F,NIJHUIS T A,HEISZWOLF J J,et al. New non-traditional multiphase catalytic reactors based on monolithic structures[J]. Catalysis Today,2001,66(2-4):133-144. [4] DE WIT H,DE GROOT A,VAN DER PAS F,et al. European Roadmap for Process Intensification. June 2008. http://dsti.nl/appi. [5] TRUBAC R E,DAUTZENBERG F M,GRIFFIN T A,et al. Micro-engineered catalyst systems:ABB's advancement in structured catalytic packings[J]. Catalysis Today,2001,69(1-4):17-24. [6] KREUTZER M T,KAPTEIJN F,MOULIJN J A. Shouldn't catalysts shape up? Structured reactors in general and gas-liquid monolith reactors in particular[J]. Catalysis Today,2006,111(1/2):111-118. [7] GASCON J,VAN OMMEN J R,MOULIJNA J A,et al. Structuring catalyst and reactor-an inviting avenue to process intensification[J]. Catalysis Science & Technology,2015,5(2):807-817. [8] SPIEGEL L,MEIER W. Distillation columns with structured packings in the next decade[J]. Chemical Engineering Research and Design,2003,81(1):39-47. [9] REICHELT E,HEDDRICH M P,JAHN M,et al. Fiber based structured materials for catalytic applications[J]. Applied Catalysis A:General,2014,476(6):78-90. [10] FRANK H J W,KUIPERS J A M,VERSTEEG G F,et al. The performance of structured packings in trickle-bed reactors[J]. Chemical Engineering Research and Design,1999,77(7):567-582. [11] VERVLOET D,KAPTEIJN F,NIJENHUIS J,et al. Process intensification of tubular reactors:considerations on catalyst hold-up of structured packings[J]. Catalysis Today,2013,216(6):111-116. [12] BERGLIN T,HERRMAN W. A method in the production of hydrogen peroxide:EP102934A2[P]. 1984-04-23. [13] TRONCONI E,GROPPI G,BOGER T,et al. Monolithic catalysts with ‘high conductivity’ honeycomb supports for gas/solid exothermic reactions:characterization of the heat-transfer properties[J]. Chemical Engineering Science,2004,59(22/23):4941-4949. [14] PFEFFERLE L D,PFEFFERLE W C. Catalysis in combustion[J]. Catalysis Reviews-Science and Engineering,1987,29(2/3):219-267. [15] KONIG A,HERDING G,HUPFELD B,et al. Current tasks and challenges for exhaust aftertreatment research:a viewpoint from the automotive industry[J]. Topics in Catalysis,2001,16/17(1-4):23-31. [16] IRANDOUST S,ANDERSSON B. Monolithic catalysts for nonautomobile applications[J]. Catalysis Reviews-Science and Engineering,1988,30(3):341-392. [17] DESHMUKH S R,TONKOVICH A L Y,JAROSCH K T,et al. Scale-up of microchannel reactors for Fischer-Tropsch synthesis[J]. Industrial & Engineering Chemistry Research,2010,49(21):10883-10888. [18] MARKOWZ G,SCHIRRMEISTER S,ALBRECHT J,et al. Microstructured reactors for heterogeneously catalyzed gas-phase reactions on an industrial scale[J]. Chemical Engineering & Technology,2005,28(4):459-464. [19] 埃尔费尔德,黑塞尔,勒韦. 微反应器-现代化学中的新技术[M]. 骆广生,王玉军,吕阳成,译. 北京:化学工业出版社,2004. EHRFELD W,HESSEL V,LÖWE H. Microreactors:new technology for modern chemistry[M]. LUO G S,WANG Y J,LV Y C,trans. Beijing:Chemical Industry Press,2004. [20] 邵潜,龙军,贺振富,等. 规整结构催化剂及反应器[M]. 北京:化学工业出版社,2005. SHAO Q,LONG J,HE Z F,et al. Regular structured catalysts and reactors[M]. Beijing:Chemical Industry Press,2005. [21] BANHART J. Manufacture,characterisation and application of cellular metals and metal foams[J]. Progress in Materials Science,2001,46(6):559-632. [22] GALLEGO N C,KLETT J W. Carbon foams for thermal management[J]. Carbon,2003,41(7):1461-1466. [23] WEN X,AFACAN A,NANDAKUMAR K,et al. Development of a novel vertical-sheet structured packing[J]. Chemical Engineering Research and Design,2005,83(5):515-526. [24] KOLODZIEJ A,KRAJEWSKI W,DUBIS A. Alternative solution for strongly exothermal catalytic reactions:a new metal-structured catalyst carrier[J]. Catalysis Today,2001,69(1-4):115-120. [25] RICHARDSON J T,REMUE D,HUNG J K. Properties of ceramic foam catalyst supports:mass and heat transfer[J]. Applied Catalysis A:General,2003,250(2):319-329. [26] GIANI L,GROPPI G,TRONCONI E. Heat transfer characterization of metallic foams[J]. Industrial & Engineering Chemistry Research,2005,44(24):9078-9085. [27] GIANI L,GROPPI G,TRONCONI E. Mass-transfer characterization of metallic foams as supports for structured catalysts[J]. Industrial & Engineering Chemistry Research,2005,44(14):4993-5002. [28] HARRIS D K,CAHELA D R,TATARCHUK B J. Wet layup and sintering of metal-containing microfibrous composites for chemical processing opportunities[J]. Composites Part A:Applied Science and Manufacturing,2001,32(8):1117-1126. [29] LU Y,WANG H,LIU Y,et al. Novel microfibrous composite bed reactor:high efficiency H2 production from NH3 with potential for portable fuel cell power supplies[J]. Lab on A Chip,2007,7(1):133-140. [30] LU Y,SATHITSUKASNOH N,QUEEN A,et al. Microfibrous entrapped ZnO-support sorbents for high contacting efficiency H2S removal from reformate streams in PEMFC applications[M]//WANG Y,HOLLADAY J D. Microreactor Technology and Process Intensification. New York:American Chemical Society Publications Division,2005:406-422. [31] TATARCHUK B,SOTHEN R A. Multi-element structured arrays (mesa's) for cost effective and high efficiency treatment of fluids:US20090142234[P]. 2009-06-04. [32] ZHANG H P,GAO L L,HU X J. Preparation of microfibrous entrapped activated carbon composite[J]. Separation and Purification Technology,2009,67(2):149-151. [33] ZHAO G F,LIU Y,LU Y. Foam/fiber-structured catalysts:non-dip-coating fabrication strategy and applications in heterogeneous catalysis[J]. Science Bulletin,2016,61(10):745-748. [34] ZHANG L,HAN L,ZHAO G F,et al. Structured Pd-Au/Cu-fiber catalyst for gas-phase hydrogenolysis of dimethyl oxalate to ethylene glycol[J]. Chemical Communications,2015,51(52):10547-10550. [35] HAN L,ZHAO G F,CHEN Y,et al. Cu-fiber-structured La2O3-PdAu(alloy)-Cu nanocomposite catalyst for gas-phase dimethyl oxalate hydrogenation to ethylene glycol[J]. Catalysis Science & Technology,2016,6(19):7024-7028. [36] 路勇,陈鹏静,朱坚,等. 一种负载型碳化镍铟合金催化剂及其制备方法和应用:2017109560801[P]. 2017-10-15. LU Y,CHEN P J,ZHU J,et al. Preparation and application of a kind of carburized NiIn alloy catalyst:2017109560801[P]. 2017-10-15. [37] ZHANG Q,WU X,ZHAO G F,et al. High-performance PdNi alloy structured in situ on monolithic metal foam for coalbed methane deoxygenation via catalytic combustion[J]. Chemical Communications,2015,51(63):12613-12616. [38] ZHANG Q,WU X,LI Y,et al. High-performance PdNi nanoalloy catalyst in situ structured on Ni foam for catalytic deoxygenation of coalbed methane:experimental and DFT studies[J]. ACS Catalysis,2016,6(9):6236-6245. [39] ZHAO G,LI Y,ZHANG Q,et al. Galvanic deposition of silver on 80-μm-Cu-fiber for gas-phase oxidation of alcohols[J]. AIChE Journal,2014,60(3):1045-1053. [40] SHEN J,SHAN W,ZHANG Y,et al. Gas-phase selective oxidation of alcohols:in situ electrolytic nano-silver/zeolite film/copper grid catalyst[J]. Journal of Catalysis,2006,237(1):94-101. [41] DENG M,ZHAO G F,XUE Q,et al. Microfibrous-structured silver catalyst for low-temperature gas-phase selective oxidation of benzyl alcohol[J]. Applied Catalysis B:Envirommental,2010,99(1/2):222-228. [42] ZHAO G F,HU H,DENG M,et al. Au/Cu-fiber catalyst with enhanced low-temperature activity and heat transfer for the gas-phase oxidation of alcohols[J]. Green Chemistry,2011,13(1):55-58. [43] ZHAO G F,HU H,DENG M,et al. Microstructured Au/Ni-fiber catalyst for low-temperature gas-phase selective oxidation of alcohols[J]. Chemical Communications,2011,47(34):9642-9644. [44] ZHAO G F,HUANG J,JIANG Z,et al. Microstructured Au/Ni-fiber catalyst for low-temperature gas-phase alcohol oxidation:evidence of Ni2O3-Au+ hybrid active sites[J]. Applied Catalysis B:Envirommental,2013,140/141(8):249-257. [45] LI Y,ZHANG Q,CHAI R,et al. Structured Ni-CeO2-Al2O3/Ni-foam catalyst with enhanced heat transfer for substitute natural gas production by syngas methanation[J]. ChemCatChem,2015,7(5):1427-1431. [46] LI Y,ZHANG Q,CHAI R,et al. CO2 methanation:high-performance catalyst with enhanced heat transfer obtained by modified wet chemical etching of Ni-foam[J]. AIChE Journal,2015,61(12):4323-4331. [47] LI Y,ZHANG Q,CHAI R,et al. Metal-foam-structured Ni-Al2O3 catalysts:wet chemical etching preparation and syngas methanation performance[J]. Applied Catalysis A:General,2016,510:216-226. [48] CHOUDHARY T V,CHOUDHARY V R. Energy-efficient syngas production through catalytic oxy-methane reforming reactions[J]. Angewandte Chemie International Edition,2008,47(10):1828-1847. [49] CHAI R,LI Y,ZHANG Q,et al. Monolithic Ni-MOx/Ni-foam (M=Al,Zr or Y) catalysts with enhanced heat/mass transfer for energy-efficient catalytic oxy-methane reforming[J]. Catalysis Communications,2015,70:1-5. [50] MENG X,XIAO F. Green routes for synthesis of zeolites[J]. Chemical Reviews,2014,114(2):1521-1543. [51] WANG X,WEN M,WANG C,et al. Microstructured fiber@HZSM-5 core-shell catalysts with dramatic selectivity and stability improvement for the methanol-to-propylene process[J]. Chemical Communications,2014,50(48):6343-6345. [52] DING J,ZHANG Z,HAN L,et al. A self-supported SS-fiber@meso-HZSM-5 core-shell catalyst via caramel-assistant synthesis toward prolonged lifetime for the methanol-to-propylene reaction[J]. RSC Advances,2016,6(54):48387-48395. [53] 路勇,丁嘉,赵国锋,等. 一种中空B-ZSM-5分子筛及其制备方法和应用:2017108575369[P]. 2017-09-21. LU Y,DING J,ZHAO G F,et al. Preparation and application of a kind of hollow B-ZSM-5 zeolite:2017108575369[P]. 2017-09-21. [54] DING J,CHEN P J,ZHU J,et al. Synthesis of microfibrous-structured SS-fiber@beta composite by a seed-assisted dry-gel conversion method[J]. Microporous and Mesoporous Materials,2017,250:1-8. [55] 路勇,孙瑛,王翔宇,等. 一种金属纤维/分子筛复合材料及其制备方法:102728399A[P]. 2012-10-17. LU Y,SUN Y,WANG X Y,et al. A kind of catalyst for synthesis of methyl phenyl carbonate via transesterification:102728399A[P]. 2012-10-17. [56] JIAO Y,YANG X,JIANG C,et al. Hierarchical ZSM-5/SiC nano-whisker/SiC foam composites:preparation and application in MTP reactions[J]. Journal of Catalysis,2015,332:70-76. [57] JIAO Y,JIANG C,YANG Z,et al. Synthesis of highly accessible ZSM-5 coatings on SiC foam support for MTP reaction[J]. Microporous and Mesoporous Materials,2013,181:201-207. [58] JIAO Y,FAN X,PERDJON M,et al. Vapor-phase transport (VPT) modification of ZSM-5/SiC foam catalyst using TPAOH vapor to improve the methanol-to-propylene (MTP) reaction[J]. Applied Catalysis A:General,2017,545:104-112. [59] WANG L,WANG Y,HAO J,et al. Synthesis of HZSM-5 coatings on the inner surface of stainless steel tubes and their catalytic performance in n-dodecane cracking[J]. Applied Catalysis A:General,2013,462-463(9):271-277. [60] YOU Z,LIU G,WANG L,et al. Binderless nano-HZSM-5 zeolite coatings prepared through combining washcoating and dry-gel conversion (DGC) methods[J]. Microporous and Mesoporous Materials,2013,170(2):235-242. [61] MENG F,LIU G,WANG L,et al. Effect of HZSM-5 coating thickness upon catalytic cracking of n-dodecane under supercritical condition[J]. Energy & Fuels,2010,24(5):2848-2856. [62] LIU G,ZHAO G,MENG F,et al. Catalytic cracking of supercriticaln-dodecane over wall-coated HZSM-5 zeolites with micro-and nanocrystal sizes[J]. Energy & Fuels,2012,26(2):1220-1229. [63] ZHANG L,QU S,WANG L,et al. Preparation and performance of hierarchical HZSM-5 coatings on stainless-steeled microchannels for catalytic cracking of hydrocarbons[J]. Catalysis Today,2013,216(6):64-70. [64] QIU Y,ZHAO G,LIU G,et al. Catalytic cracking of supercriticaln-dodecane over wall-coated nano-Ag/HZSM-5 zeolites[J]. Industrial & Engineering Chemistry Research,2014,53(47):18104-18111. [65] GUO W,XIAO W,LUO M. Comparison among monolithic and randomly packed reactors for the methanol-to-propylene process[J]. Chemical Engineering Journal,2012,207/208(10):734-745. [66] GUO W,WU W,LUO M,et al. Modeling of diffusion and reaction in monolithic catalysts for the methanol-to-propylene process[J]. Fuel Processing Technology,2013,108(4):133-138. [67] BEDARD J,CHIANG H,BHAN A. Kinetics and mechanism of acetic acid esterification with ethanol on zeolites[J]. Journal of Catalysis,2012,290:210-219. [68] DENG T,LI Y,ZHAO G F,et al. Catalytic distillation for ethyl acetate synthesis using microfibrous-structured Nafion-SiO2/SS fiber solid acid packings[J]. Reaction Chemistry & Engineering,2016,1(4):409-417. [69] DENG T,DING J,ZHAO G F,et al. Catalytic distillation for esterification of acetic acid with ethanol:promising SS-fiber@HZSM-5 catalytic packings and experimental optimization via response surface methodology[J]. Journal of Chemical Technology & Biotechnology,2018,93(3):827-841. [70] WANG C,HAN L,ZHANG Q,et al. Endogenous growth of 2D AlOOH nanosheets on a 3D Al-fiber network via steam-only oxidation in application for forming structured catalysts[J]. Green Chemistry,2015,17(7):3762-3765. [71] YUE H,ZHAO Y,MA X,et al. Ethylene glycol:properties,synthesis,and applications[J]. Chemical Society Reviews,2012,41(11):4218-4244. [72] WANG C,HAN L,CHEN P,et al. High-performance,low Pd-loading microfibrous-structured Al-fiber@ns-AlOOH@Pd catalyst for CO coupling to dimethyl oxalate[J]. Journal of Catalysis,2016,337:145-156. [73] HAN L,WANG C,ZHAO G,et al. Microstructured Al-fiber@meso-Al2O3@Fe-Mn-K Fischer-Tropsch catalyst for lower olefins[J]. AIChE Journal,2016,62(3):742-752. [74] CAI S,ZHANG D,SHI L,et al. Porous Ni-Mn oxide nanosheets in situ formed on nickel foam as 3D hierarchical monolith de-NOx catalysts[J]. Nanoscale,2014,6(13):7346-7353. [75] TIAN J,XING Z,CHU Q,et al. pH-driven dissolution-precipitation:a novel route toward ultrathin Ni(OH)2 nanosheets array on nickel foam as binder-free anode for Li-ion batteries with ultrahigh capacity[J]. CrystEngComm,2013,15(41):8300-8305. [76] CHAI R,LI Y,ZHANG Q,et al. Free-standing NiO-MgO nanosheets in-situ controllably composited on Ni-foam as monolithic catalyst for catalytic oxy-methane reforming[J]. Materials Letters,2016,171:248-251. [77] EVANS D G,DUAN X. Preparation of layered double hydroxides and their applications as additives in polymers,as precursors to magnetic materials and in biology and medicine[J]. Chemical Communications,2006,6(5):485-496. [78] HE L,HUANG Y,WANG A,et al. A noble-metal-free catalyst derived from Ni-Al hydrotalcite for hydrogen generation from N2H4·H2O decomposition[J]. Angewandte Chemie International Edition,2012,51(25):6191-6194. [79] GARDNER G P,GO Y B,ROBINSON D M,et al. Structural requirements in lithium cobalt oxides for the catalytic oxidation of water[J]. Angewandte Chemie International Edition,2012,51(7):1616-1619. [80] SUN J,LI Y,LIU X,et al. Hierarchical cobalt iron oxide nanoarrays as structured catalysts[J]. Chemical Communications,2012,48(28):3379-3381. [81] CHEN H,ZHANG F,CHEN T,et al. Comparison of the evolution and growth processes of films of M/Al-layered double hydroxides with M=Ni or Zn[J]. Chemical Engineering Science,2009,64(11):2617-2622. [82] LI C,ZHOU J,GAO W,et al. Binary Cu-Co catalysts derived from hydrotalcites with excellent activity and recyclability towards NH3BH3 dehydrogenation[J]. Journal of Materials Chemistry A,2013,1(17):5370-5376. [83] CHAI R,LI Y,ZHANG Q,et al. Foam-structured NiO-MgO-Al2O3 nanocomposites derived from NiMgAl layered double hydroxides in situ grown onto nickel foam:a promising catalyst for high-throughput catalytic oxymethane reforming[J]. ChemCatChem,2017,9(2):268-272. [84] CHAI R,FAN S,ZHANG Z,et al. Free-standing NiO-MgO-Al2O3 nanosheets derived from layered double hydroxides grown onto fecral-fiber as structured catalysts for dry reforming of methane[J]. ACS Sustainable Chemistry and Engineering,2017,5(6):4517-4522. [85] ZHANG Q,ZHAO G F,ZHANG Z,et al. From nano-to macro-engineering of oxideencapsulated-nanoparticles for harsh reactions:one-step organization via cross-linking molecules[J]. Chemical Communications,2016,52(80):11927-11930. [86] CHAI R,ZHAO G F,ZHANG Z,et al. High sintering-/coke-resistance Ni@SiO2/Al2O3/FeCrAl-fiber catalyst for dry reforming of methane:one-step,macro-to-nano organization via cross-linking molecules[J]. Catalysis Science & Technology,2017,7(23):5500-5504. [87] TAO F,GRASS M E,ZHANG Y,et al. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles[J]. Science,2008,322(5903):932-934. [88] FRIEDRICH M,PENNER S,HEGGEN M,et al. High CO2 selectivity in methanol steam reforming through ZnPd/ZnO teamwork[J]. Angewandte Chemie International Edition,2013,52(16):4389-4392. [89] ZHANG S,SHAN J,ZHU Y,et al. WGS catalysis and in situ studies of CoO1-x,PtCon/Co3O4,and PtmCom'/CoO1-x nanorod catalysts[J]. Journal of the American Chemical Society,2013,135(22):8283-8293. [90] ZHAO G F,FAN S,TAO L,et al. Titanium-microfiber-supported binary-oxide nanocomposite with a large highly active interface for the gas-phase selective oxidation of benzyl alcohol[J]. ChemCatChem,2016,8(2):313-317. [91] ZHAO G F,FAN S,PAN X,et al. Reaction-induced self-assembly of CoO@Cu2O nanocomposites in situ onto SiC-foam for gas-phase oxidation of bioethanol to acetaldehyde[J]. ChemSusChem,2017,10(7):1380-1384. [92] JIANG F T,FANG Y Z,LIU Y,et al. Paper-like 3-dimensional carbon nanotubes(CNTs)-microfiber hybrid:a promising macroscopic structure of CNTs[J]. Journal of Materials Chemistry,2009,19(22):3632-3637. [93] YU D,QIAN Q,WEI L,et al. Emergence of fiber supercapacitors[J]. Chemical Society Reviews,2015,44(3):647-662. [94] WANG Q,WANG X,XU J,et al. Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes[J]. Nano Energy,2014,8(9):44-51. [95] GU S,LOU Z,MA X,et al. CuCo2O4 Nanowires grown on a Ni wire for high-performance,flexible fiber supercapacitors[J]. ChemElectroChem,2015,2(7):1042-1047. [96] WU H,LOU Z,YANG H,et al. A flexible spiral-type supercapacitor based on ZnCo2O4 nanorod electrodes[J]. Nanoscale,2015,7(5):1921-1926. [97] RAMADOSS A,KANG K,AHN H,et al. Realization of high performance flexible wire supercapacitors based on 3-dimensional NiCo2O4/Ni fibers[J]. Journal of Materials Chemistry A,2016,4(13):4718-4727. [98] ZHU W H,FLANZER M E,TATARCHUK B J. Nickel-zinc accordion-fold batteries with microfibrous electrodes using a papermaking process[J]. Journal of Power Sources,2002,112(2):353-366. [99] ZHU W H,DURBEN P J,TATARCHUK B J. Microfibrous nickel substrates and electrodes for battery system applications[J]. Journal of Power Sources,2002,111(2):221-231. [100] ZHU W H,POOLE B A,CAHELA D R,et al. New structures of thin air cathodes for zinc-air batteries[J]. Journal of Applied Electrochemistry,2003,33(1):29-36. [101] FANG Y,JIANG F,LIU H,et al. Free-standing Ni-microfiber-supported carbon nanotube aerogel hybrid electrodes in 3D for high-performance supercapacitors[J]. RSC Advances,2012,2(16):6562-6569. [102] LI Y,FANG Y,LIU H,et al. Free-standing 3D polyaniline-CNTs/Ni-fiber hybrid electrodes for high-performance supercapacitors[J]. Nanoscale,2012,4(9):2867-2869. [103] ZOU X AND ZHANG Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews,2015,44(15):5148-5180. [104] FENG L,YU G,WU Y,et al. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting[J]. Journal of the American Chemical Society,2015,137(44):14023-14026. [105] CHEN Y,HAN L,ZHU J,et al. High-performance Ag-CuOx nanocomposite catalyst galvanically deposited onto a Ni-foam for gas-phase dimethyl oxalate hydrogenation to methyl glycolate[J]. Catalysis Communications,2017,96:58-62. [106] 路勇,朱坚,陈鹏静,等. 一种自支撑磷化镍催化剂及其制备方法和应用:2017109560905[P]. 2017-10-15. LU Y,ZHU J,CHEN P J,et al. Preparation and application of a kind of free-standing NixP catalyst:2017109560905[P]. 2017-10-15. [107] 凌敏,赵国锋,曹发海,等. 新型微纤结构催化/吸附填料研究进展[J]. 催化学报,2010,31(7):717-724. LING M,ZHAO G F,CAO F H,et al. Advances in research on novel microfibrous structured catalytic/adsorbent packings[J]. Chinese Journal of Catalysis,2010,31(7):717-724. [108] CHEN W,SHENG W Q,CAO F H,et al. Microfibrous entrapment of Ni/Al2O3 for dry reforming of methane:heat/mass transfer enhancement towards carbon resistance and conversion promotion[J]. International Journal of Hydrogen Energy,2012,37(23):18021-18030. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[7] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[8] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[9] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[10] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[11] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[12] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[13] | 肖辉, 张显均, 兰治科, 王苏豪, 王盛. 液态金属绕流管束流动传热进展[J]. 化工进展, 2023, 42(S1): 10-20. |
[14] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[15] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |