[1] RACKEMANN D W,DOHERTY W O S. The conversion of lignocellulosics to levulinic acid[J]. Biofuels Bioproducts & Biorefining-Biofpr,2011,5(2):198-214.
[2] VAN PUTTEN R J,VAN DER WAAL J C,DE JONG E,et al. Hydroxymethylfurfural,a versatile platform chemical made from renewable resources[J]. Chemical Reviews,2013,113(3):1499-1597.
[3] 姜楠,齐崴,黄仁亮,等. 生物质制备5-羟甲基糠醛的研究进展[J]. 化工进展,2011,30(9):1937-1945. JIANG N,QI W,HUANG R L,et al. Research progress of synthesis of 5-hydroxymethylfurfural from biomass[J]. Chemical Industry and Engineering Progress,2011,30(9):1937-1945.
[4] 彭红,刘玉环,张锦胜,等. 生物质生产乙酰丙酸研究进展[J]. 化工进展,2009,28(12):2237-2241. PENG H,LIU Y H,ZHANG J S,et al. Progress in production of levulinic and from biomass[J]. Chemical Industry and Engineering Progress,2009,28(12):2237-2241.
[5] BINDER J B,RAINES R T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals[J]. Journal of the American Chemical Society,2009,131(5):1979-1985.
[6] LI C Z,ZHANG Z H,ZHAO Z B K. Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation[J]. Tetrahedron Letters,2009,50(38):5403-5405.
[7] MA H,WANG F R,YU Y H,et al. Autocatalytic production of 5-hydroxymethylfurfural from fructose-based carbohydrates in a biphasic system and its purification[J]. Industrial & Engineering Chemistry Research,2015,54(10):2657-2666.
[8] QI X H,WATANABE M,AIDA T M,et al. Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating[J]. Catalysis Communications,2008,9(13):2244-2249.
[9] CRANE R K. Intestinal absorption of sugars[J]. Physiological Reviews,1960,40(4):789-825.
[10] CRAPO P A,OLEFSKY J M. Fructose-its characteristics,physiology,and metabolism[J]. Nutrition Today,1980,15(4):10-15.
[11] PALAZZ E,CONVERTI A. Generalized linearization of kinetics of glucose isomerization to fructose by immobilized glucose isomerase[J]. Biotechnology and Bioengineering,1999,63(3):273-284.
[12] BUCHHOLZ K,SEIBEL J. Industrial carbohydrate biotransformations[J]. Carbohydrate Research,2008,343(12):1966-1979.
[13] 马清泉,黄友梅,刘文圣,等. 用金属离子处理多孔Al2O3载体对葡萄糖异构酶固载化的影响[J]. 分子催化,1991,5(2):178-183. MA Q Q,HUANG Y M,LIU W S,et al. Effect of pretreating Al2O3 support with metal ions on the immobilization of glucose isomerase[J]. Journal of Molecular Catalysis,1991,5(2):178-183.
[14] BHOSALE S H,RAO M B,DESHPANDE V V. Molecular and industrial aspects of glucose isomerase[J]. Microbiological Reviews,1996,60(2):280-300.
[15] DE BRUYN C,VAN EKENSTEIN W A. Action des alcalis sur les sucres. Ⅱ. Transformation réciproque des uns dans les autres des sucres glucose,fructose et mannose[J]. Recueil des Travaux Chimiques des Pays-Bas,1895,14(7):203-216.
[16] KNILL C J,KENNEDY J F. Degradation of cellulose under alkaline conditions[J]. Carbohydrate Polymers,2003,51(3):281-300.
[17] YANG B Y,MONTGOMERY R. Alkaline degradation of glucose:effect of initial concentration of reactants[J]. Carbohydrate Research,1996,280(1):27-45.
[18] DE BRUIJN J M,KIEBOOM A P G,VAN BEKKUM H. Alkaline degradation of monosaccharides Part Ⅶ. A mechanistic picture[J]. Starch-Stärke,1987,39(1):23-28.
[19] DE BRUIJN J M,KIEBOOM A P G,VAN BEKKUM H. Alkaline degradation of monosaccharidesⅤ:kinetics of the alkaline isomerization and degradation of monosaccharides[J]. Recueil des Travaux Chimiques des Pays-Bas,1987,106(2):35-43.
[20] LIU C,CARRAHER J M,SWEDBERG J L,et al. Selective base-catalyzed isomerization of glucose to fructose[J]. ACS Catalysis,2014,4(12):4295-4298.
[21] YANG Q,SHERBAHN M,RUNGE T. Basic amino acids as green catalysts for isomerization of glucose to fructose in water[J]. ACS Sustainable Chemistry & Engineering,2016,4(6):3526-3534.
[22] RENDLEMAN J A,HODGE J E. Complexes of carbohydrates with aluminate ion. Aldose-ketose interconversion on anion-exchange resin (aluminate and hydroxide forms)[J]. Carbohydrate Research,1979,75:83-99.
[23] VAN DEN BERG R,PETER J A,VAN BEKKUM H. The structure and(local)stability constants of borate esters of mono-and di-saccharides as studied by 11B and 13C NMR spectroscopy[J]. Carbohydrate Research,1994,253:1-12.
[24] MENDICINO J F. Effect of borate on the alkali-catalyzed isomerization of sugars1[J]. Journal of the American Chemical Society,1960,82(18):4975-4979.
[25] DELIDOVICH I,PALKOVITS R. Fructose production viaextraction-assisted isomerization of glucose catalyzed by phosphates[J]. Green Chemistry,2016,18(21):5822-5830.
[26] 陈忠明,陶克毅. 固体碱催化剂的研究进展[J]. 化工进展,1994,13(2):18-25. CHEN Z M,TAO K Y. Research advancement of solid basic catalysts[J]. Chemical Industry and Engineering Progress,1994,13(2):18-25.
[27] MOREAU C,DURAND R,ROUX A,et al. Isomerization of glucose into fructose in the presence of cation-exchanged zeolites and hydrotalcites[J]. Applied Catalysis A:General,2000,193(1):257-264.
[28] LIMA S,DIAS A S,LIN Z,et al. Isomerization of D-glucose to D-fructose over metallosilicate solid bases[J]. Applied Catalysis A:General,2008,339(1):21-27.
[29] DELIDOVICH I,PALKOVITS R. Structure-performance correlations of Mg-Al hydrotalcite catalysts for the isomerization of glucose into fructose[J]. Journal of Catalysis,2015,327:1-9.
[30] KITAJIMA H,HIGASHINO Y,MATSUDA S,et al. Isomerization of glucose at hydrothermal condition with TiO2,ZrO2,CaO/ZrO2 or TiO2/ZrO2[J]. Catalysis Today,2016,274:67-72.
[31] 李冰杰,史秀锋,刘秀芳,等. ZnAl水滑石负载钯催化剂的制备及催化性能[J]. 化工进展,2014,33(10):2661-2664. LIU B J,SHI X F,LIU X F,et al. Preparation of hydrotalcite-supported palladium catalysts and their catalytic performances[J]. Chemical Industry and Engineering Progress,2014,33(10):2661-2664.
[32] CHIBWE K,JONES W. Intercalation of organic and inorganic anions into layered double hydroxides[J]. Journal of the Chemical Society,Chemical Communications,1989,14:926-927.
[33] MCKENZIE A L,FISHEL C T,DAVIS R J. Investigation of the surface structure and basic properties of calcined hydrotalcites[J]. Journal of Catalysis,1992,138(2):547-561.
[34] DELIDOVICH I,PALKOVITS R. Catalytic activity and stability of hydrophobic Mg-Al hydrotalcites in the continuous aqueous-phase isomerization of glucose into fructose[J]. Catalysis Science & Technology,2014,4(12):4322-4329.
[35] OHARA M,TAKAGAKI A,NISHIMURA S,et al. Syntheses of 5-hydroxymethylfurfural and levoglucosan by selective dehydration of glucose using solid acid and base catalysts[J]. Applied Catalysis A-General,2010,383(1/2):149-155.
[36] COLUCCIA S,BOCCUZZI F,GHIOTTI G,et al. Infrared study of hydrogen adsorption on MgO,CaO and SrO. Possible mechanism in promoting O formation[J]. Journal of the Chemical Society,Faraday Transactions 1:Physical Chemistry in Condensed Phases,1982,78(7):2111-2119.
[37] YANG Q,ZHOU S,RUNGE T. Magnetically separable base catalysts for isomerization of glucose to fructose[J]. Journal of Catalysis,2015,330:474-484.
[38] DESPAX S,ESTRINE B,HOFFMANN N,et al. Isomerization of D-glucose into D-fructose with a heterogeneous catalyst in organic solvents[J]. Catalysis Communications,2013,39:35-38.
[39] SON P A,NISHIMURA S,EBITANI K. Preparation of zirconium carbonate as water-tolerant solid base catalyst for glucose isomerization and one-pot synthesis of levulinic acid with solid acid catalyst[J]. Reaction Kinetics Mechanisms and Catalysis,2014,111(1):183-197.
[40] HARRIS D W,FEATHER M S. Evidence for a C-2→C-1 intramolecular hydrogen-transfer during the acid-catalyzed isomerization of D-glucose to D-fructose ag[J]. Carbohydrate Research,1973,30(2):359-365.
[41] TANG J,GUO X,ZHU L,et al. Mechanistic study of glucose-to-fructose Isomerization in water catalyzed by[Al(OH)2 (aq)]+[J]. ACS Catalysis,2015,5(9):5097-5103.
[42] YANG Y,HU C W,ABU-OMAR M M. Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3·6H2O catalyst in a biphasic solvent system[J]. Green Chemistry,2012,14(2):509-513.
[43] ROMAN-LESHKOV Y,DAVIS M E. Activation of carbonyl-containing molecules with solid Lewis acids in aqueous media[J]. ACS Catalysis,2011,1(11):1566-1580.
[44] TAAMING E,SARAVANAMURUGAN S,HOLM M S,et al. Zeolite-catalyzed isomerization of triose sugars[J]. ChemSusChem,2009,2(7):625-627.
[45] MOLINER M,ROMAN-LESHKOV Y,DAVIS M E. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water[J]. Proceedings of the National Academy of Sciences,2010,107(14):6164-6168.
[46] LIU M,JIA S,LI C,et al. Facile preparation of Sn-β zeolites by post-synthesis (isomorphous substitution) method for isomerization of glucose to fructose[J]. Chinese Journal of Catalysis,2014,35(5):723-732.
[47] GOUNDER R,DAVIS M E. Titanium-beta zeolites catalyze the stereospecific isomerization of D-Glucose to L-Sorbose via intramolecular C5-C1 hydride shift[J]. ACS Catalysis,2013,3(7):1469-1476.
[48] 李腾,刘玥,刘海超. 甲醇中H-Beta分子筛高效催化葡萄糖异构反应[C]//中国化学会第29届学术年会,北京,2014. LI T,LIU Y,LIU H C. Efficient isomerization of glucose catalyzed by H-Beta in methanol[C]//The 29 Annual Meeting of the Chinese Chemical Society,Bejing,2014.
[49] SARAVANAMURUGAN S,PANIAGUA M,MELERO J A,et al. Efficient isomerization of glucose to fructose over zeolites in consecutive reactions in alcohol and aqueous media[J]. Journal of the American Chemical Society,2013,135(14):5246-5249.
[50] MEEK S T,GREATHOUSE J A,ALLENGORF M D. Metal-organic frameworks:a rapidly growing class of versatile nanoporous materials[J]. Advanced Materials,2011,23(2):249-67.
[51] AKIYAMA G,MATSUDA R,SATO H,et al. Catalytic glucose isomerization by porous coordination polymers with open metal sites[J]. Chemistry:An Asian Journal,2014,9(10):2772-2777.
[52] 苏叶,鲍宗必,张治国,等. L酸/B酸可调的磺酸功能化MIL-101(Cr)材料催化葡萄糖脱水制备5-羟甲基糠醛[J]. 化工学报,2016,67(7):2799-2807. SU Y,BAO Z B,ZHANG Z G,et al. Sulfonic acid functionalized MIL-101(Cr) catalysts with tunable Lewis acid and Brönsted acid sites for glucose dehydration to 5-HMF[J]. CIESC Journal,2016,67(7):2799-2807.
[53] 蒋平平,李晓婷,冷炎,等. 离子液体制备及其化工应用进展[J]. 化工进展,2014,33(11):2815-2828. JIANG P P,LI X T,LENG Y,et al. Preparation and application of ionic liquids[J]. Chemical Industry and Engineering Progress,2014,33(11):2815-2828.
[54] ZHAO H,HOLLADAY J E,BROWN H,et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science,2007,316(5831):1597-1600.
[55] 陶芙蓉,崔月芝,庄辰,等. 离子液体对锯末中纤维素的溶解及再生研究[J]. 分子催化,2013,27(5):420-428. TAO F R,CUI Y Z,ZHUANSG C,et al. The dissolution and regeneration of cellulose in sawdust from ionic liquids[J]. Journal of Molecular Catalysis,2013,27(5):420-428.
[56] ROMÁN-LESHKOV Y,MOLINER M,LABINGER J A,et al. Mechanism of glucose isomerization using a solid Lewis acid catalyst in water[J]. Angewandte Chemie International Edition,2010,49(47):8954-8957.
[57] CATTAHER J M,FLEITMAN C N,TESSONNIER J P. Kinetic and mechanistic study of glucose isomerization using homogeneous organic Brønsted base catalysts in water[J]. ACS Catalysis,2015,5(6):3162-3173.
[58] LI G,PIDKO E A,HENSEN E J M. Synergy between Lewis acid sites and hydroxyl groups for the isomerization of glucose to fructose over Sn-containing zeolites:a theoretical perspective[J]. Catalysis Science & Technology,2014,4(8):2241-2250.
[59] QIAN X H. Mechanisms and energetics for Bronsted acid-catalyzed glucose condensation,dehydration and isomerization reactions[J]. Topics in Catalysis,2012,55(3/4):218-226.
[60] QIAN X H,WEI X F. Glucose isomerization to fructose from ab initio molecular dynamics simulations[J]. Journal of Physical Chemistry B,2012,116(35):10898-10904. |