[1] QIAO J,LIU Y,HONG F,et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews,2014,43(2):631-675.
[2] BARD A J,PARSONS R,JORDAN J. Standard potentials in aqueous solution[M]. Florida:CRC Press,1985.
[3] KUHL K P,CAVE E R,ABRAM D N,et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energy & Environmental Science,2012,5(5):7050-7059.
[4] HORI Y,KIKUCHI K,SUZUKI S. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution[J]. Chemistry Letters,1985(11):1695-1698.
[5] LI C W,CISTON J, KANAN M W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper[J]. Nature,2014,508(7497):504-507.
[6] HORI Y,MURATA A,TAKAHASHI R,et al. Electroreduction of carbon monoxide to methane and ethylene at a copper electrode in aqueous solutions at ambient temperature and pressure[J]. Journal of the American Chemical Society,1987,109(16):5022-5023.
[7] HOSHI N,UCHIDA T,MIZUNURA T,et al. Atomic arrangement dependence of reduction rates of carbon dioxide on iridium single crystal electrodes[J]. Journal of Electroanalytical Chemistry,1995,381(1):261-264.
[8] TAKAHASHI I,KOGA O,HOSHI N,et al. Electrochemical reduction of CO2,at copper single crystal Cu(S)-[n (111)×(111)] and Cu(S)-[n(110)×(100)] electrodes[J]. Journal of Electroanalytical Chemistry,2002,533(1/2):135-143.
[9] HORI Y,TAKAHASHI I,KOGA O,et al. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes[J]. Journal of Molecular Catalysis A:Chemical,2003,199(1/2):39-47.
[10] DELACOURT Charles. Electrochemical reduction of carbon dioxide and water to syngas (CO+H2) at room temperature[D]. Berkeley:Department of Chemical Engineering,University of California Berkeley,2006-2007.
[11] HORI Y,KONISHI H,FUTAMURA T,et al. Deactivation of copper electrode in electrochemical reduction of CO2[J]. Electrochimica Acta,2005,50(27):5354-5369.
[12] MANTHIRAM K,BEBERWYCK B J,ALIVISATOS A P. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst[J]. Journal of the American Chemical Society,2014,136(38):13319-13325.
[13] BATURINA O A, LU Q,PADILLA M A,et al. CO2 electroreduction to hydrocarbons on carbon-supported Cu nanoparticles[J]. ACS Catalysis,2014,4(10):3682-3695.
[14] HEIZ U,SANCHEZ A,ABBET S,et al. Catalytic oxidation of carbon monoxide on monodispersed platinum clusters:each atom counts[J]. Journal of the American Chemical Society,1999,121(13):3214-3217.
[15] LOIUDICE A,LOBACCARO P, KAMALI E A,et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction[J]. Angewandte Chemie International Edition,2016,55(19):5789-5792.
[16] ROBERTS F S,KUHL K P,NILSSON A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts[J]. Angewandte Chemie,2015,127(17):5268-5271.
[17] RACITI D,LIVI K J,WANG C. Highly dense Cu nanowires for low-overpotential CO2 reduction[J]. Nano Letters,2015,15(10):6829-6835.
[18] TANG W,PETERSON A,VARELA A S,et al. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction[J]. Physical Chemistry Chemical Physics, 2012,14(1):76-81.
[19] MISTRY H,VARELA A S,BONIFACIO C S,et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene[J]. Nature Communications,2016,7. DOI:10.1038/ncomms 12123.
[20] XIE M S, XIA B Y,LI Y,et al. Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons[J]. Energy & Environmental Science,2016,9(5):1687-1695.
[21] WANG Z,YANG G,ZHANG Z,et al. Selectivity on etching: creation of high-energy facets on copper nanocrystals for CO2 electrochemical reduction[J]. ACS Nano,2016,10(4):4559-4564.
[22] LI C W,KANAN M W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films[J]. Journal of the American Chemical Society,2012,134(17):7231-7234.
[23] KAS R,KORTLEVER R,MILBRAT A,et al. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons[J]. Physical Chemistry Chemical Physics,2014,16(24):12194-201.
[24] CHEN C S,WAN J H,YEO B S. Electrochemical reduction of carbon dioxide to ethane using nanostructured Cu2O-derived copper catalyst and palladium (Ⅱ) chloride[J]. Journal of Physical Chemistry C,2015,119(48):26875-26882.
[25] LEE S,KIM D,LEE J. Electrocatalytic production of C3-C4 compounds by conversion of CO2 on a chloride-induced bi-phasic Cu2O-Cu catalyst[J]. Angewandte Chemie,2015,127(49):14914-14918.
[26] KUDELSKI A,KEDZIERZAWSKI P, BUKOWSKA J,et al. An SERS investigation of CO intermediate adsorption on a modified Cu-Zr amorphous alloy during CO2 reduction[J]. Russian Journal of Electrochemistry,2000,36(11):1186-1188.
[27] WATANABE M,SHIBATA M,KATOH A,et al. Design of alloy electrocatalysts for CO2 reduction:improved energy efficiency,selectivity,and reaction rate for the CO2 electroreduction on Cu alloy electrodes[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1991,305(2):319-328.
[28] ZHAO X,LUO B,LONG R,et al. Composition-dependent activity of Cu-Pt alloy nanocubes for electrocatalytic CO2 reduction[J]. Journal of Materials Chemistry A,2015,3(8):4134-4138.
[29] MONZÓ J,MALEWSKI Y,KORTLEVER R,et al. Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction[J]. Journal of Materials Chemistry A,2015,3(47):23690-23698.
[30] LI Q,ZHU W,FU J,et al. Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene[J]. Nano Energy,2016,24:1-9.
[31] TORELLI D A,FRANCIS S A,CROMPTON J C,et al. Nickel-gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials[J]. ACS Catalysis,2016,6(3):2100-2104.
[32] SUN X,KANG X,ZHU Q, et al. Very highly efficient reduction of CO2 to CH4 using metal-free N-doped carbon electrodes[J]. Chemical Science, 2016,7(4):2883-2887.
[33] MURATA A,HORI Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode[J].Bulletin of the Chemical Society of Japan,1991,64(1):123-127.
[34] HORI Y,MURATA A,TAKAHASHI R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution[J]. Journal of the Chemical Society,Faraday Transactions 1:Physical Chemistry in Condensed Phases,1989,85(8):2309-2326.
[35] VARELA A S,KROSCHEL M,REIER T,et al. Controlling the selectivity of CO2 electroreduction on copper:the effect of the electrolyte concentration and the importance of the local pH[J]. Catalysis Today,2016,260:8-13.
[36] VARELA A S,JU W,REIER T,et al. Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides[J]. ACS Catalysis,2016,6(4):2136-2144.
[37] KAS R,KORTLEVER R,YILMAZ H,et al. Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions[J]. ChemElectroChem,2015,2(3):354-358.
[38] HARA K,TSUNETO A,KUDO A,et al. Electrochemical reduction of CO2 on a Cu electrode under high pressure factors that determine the product selectivity[J]. Journal of the Electrochemical Society,1994,141(8):2097-2103.
[39] MIZUNO T,OHTA K,KAWAMOTO M,et al. Electrochemical reduction of CO2 on Cu in 0.1M KOH-methanol[J]. Energy Sources,1997,19(3):249-257.
[40] KANECO S,IIBA K,HIEI N H,et al. Electrochemical reduction of carbon dioxide to ethylene with high Faradaic efficiency at a Cu electrode in CsOH/methanol[J]. Electrochimica Acta,1999,44(26):4701-4706.
[41] MURUGANANTHAN M,KUMARAVEL M, KATSTMATA H,et al. Electrochemical reduction of CO2 using Cu electrode in methanol/LiClO4 electrolyte[J]. International Journal of Hydrogen Energy,2015,40(21): 6740-6744.
[42] SEDDON K R. Ionic liquids for clean technology[J]. Journal of Chemical Technology and Biotechnology,1997,68(4):351-356.
[43] 张锁江,吕兴梅. 离子液体从基础研究到工业应用[M]. 北京:科学出版社,2006. ZHANG S J,LV X M. Ionic liquid-from basic research industrial application[M].Beijing:Science Press,2006.
[44] 赵晨辰,何向明,王莉,等.电化学还原CO2阴极材料研究进展[J]. 化工进展,2013,32(2):373-380. ZHAO C C,HE X M,WANG L,et al. Progress of cathode materials for electrochemical reduction of carbon dioxide[J]. Chemical Industry and Engineering Progress,2013,32(2):373-380.
[45] BLANCHARD L A,HANCU D,BECKMAN E J,et al. Green processing using ionic liquids and CO2[J]. Nature,1999,399:28-29.
[46] BLANCHARD L A,GU Z,BRENECKE J F. High-pressure phase behavior of ionic liquid/CO2 systems[J]. The Journal of Physical Chemistry B,2001,105(12):2437-2444.
[47] BATES E D,MAYTON R D,NTAI I,et al. CO2 capture by a task-specific ionic liquid[J]. Journal of the American Chemical Society,2002,124(6):926-927.
[48] BARROSSE-ANTLE L E,COMPTON R G. Reduction of carbon dioxide in 1-butyl-3-methylimidazolium acetate[J]. Chemical Communications,2009,25:3744-3746.
[49] CHU D B,QIN G X,YUAN X M,et al. Fixation of CO2 by electrocatalytic reduction and electropolymerization in ionic liquid-H2O solution[J]. ChemSusChem,2008,1(3):205-209.
[50] ZHU J,LIU G,LIU Z,et al. Conducting membranes:unprecedented perovskite oxyfluoride membranes with high-efficiency oxygen ion transport paths for low-temperature oxygen permeation[J]. Advanced Materials,2016,28(18):3510-3510.
[51] HORI Y,TAKAHASHI R,YOSHINAMI Y,et al. Electrochemical reduction of CO at a copper electrode[J]. The Journal of Physical Chemistry B,1997,101(36):7075-7081.
[52] SCHOUTEN K J P,KWON Y,VAN DER HAM C J M,et al. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes[J]. Chemical Science,2011,2(10):1902-1909.
[53] NIE X,ESOPI M R,JANIK M J,et al. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps[J]. Angewandte Chemie International Edition,2013,52(9):2459-2462.
[54] LUO W,NIE X,JANIK M J,et al. Facet dependence of CO2 reduction paths on Cu electrodes[J]. ACS Catalysis,2015,6(1):219-229.
[55] AMEPELLI C,GENOVESE C,MAREPALLY B C,et al. Electrocatalytic conversion of CO to produce solar fuels in electrolyte or electrolyte-less configurations of PEC cells[J]. Faraday Discussions,2015,183:125-145. |