[1] Mathews J P, Chaffee A L. The molecular representations of coal——A review[J]. Fuel, 2012, 96(1): 1-14. [2] 陈文求, 王仁宗, 陈敏杰, 等. 腐植酸的降解研究及进展[J]. 化工进展, 2013, 32(s1): 207-212. [3] 贾振宇, 崔英德, 黎新明, 等. 腐殖酸表面接枝对丙烯酸类超强吸水树脂的改性研究[J]. 化工进展, 2005, 24(7): 788-791. [4] 李善祥. 腐植酸产品分析及标准[M]. 北京: 化学工业出版社, 2007: 70. [5] Novak J, Kozler J, Janos P, et al. Humic acids from coals of the North-Bohemian coal field I. Preparation and characterisation[J]. Reactive & Functional Polymers, 2001, 47(2): 101-109. [6] García D, Cegarra J, Abad M. A comparison between alkaline and decomplexing reagents to extract humic acids from low rank coals[J]. Fuel Processing Technology, 1996, 48(1): 51-60. [7] Ciavatta C, Govi M, Gessa C. Investigation of fulvic acids from peat using capillary electrophoresis (CE)[J]. Journal of High Resolution Chromatography, 1997, 20(2); 67-71. [8] Shin H S, Monsallier J M, Choppin G R. Spectroscopic and chemical characterizations of molecular size fractionated humic acid[J]. Talanta, 1999, 50(3): 641-647. [9] 程亮, 张保林, 侯翠红, 等. 高剪切条件下纳米腐殖酸的制备与表征[J]. 化工学报, 2012, 63(8): 2648-2654. [10] Jang T, Han G H, Zhang Y B, et al. Improving extraction yield of humic substances from lignite with anthraquinone in alkaline solution[J]. Journal of Central South University of Technology, 2011, 18(1): 68-72. [11] Fong S S, Seng L, Mat H B. Reuse of nitric acid in the oxidative pretreatmentstep for preparation of humic acids from low rank coal of Mukah, Sarawak[J]. Journal of the Brazilian Chemical Society, 2007, 18(1): 41-46. [12] Doskočil L, Grasset L, Válková D, et al. Hydrogen peroxide oxidation of humic acids and lignite[J]. Fuel, 2014, 134: 406-413. [13] Jackson W R, Bongers G D, Redlich P J, et al. Characterisation of brown coal humic acids and modified humic acids using pyrolysis gcms and other techniques[J]. International Journal of Coal Geology, 1996, 32(1-4): 229-240. [14] Meyer G, Klöcking R, 张彩凤, 等. 使用草酸作为沉淀剂提高腐植酸品质[J]. 腐植酸, 2013(6): 37-39. [15] 杭波, 邓亚玲, 习莉, 等. 利用尿素复合溶液从风化煤中提取水溶腐植酸和生成腐植酸络合酰胺态氮的研究[J]. 腐植酸, 2013(3): 12-18. [16] 王德强, 袁源. 煤的溶胀处理对药用腐植酸提取的影响研究[J]. 煤化工, 2014(3): 31-34. [17] Adani F, Ricca G, Tambone F, et al. Isolation of the stable fraction (the core) of the humic acid[J]. Chemosphere, 2006, 65(8): 1300-1307. [18] Stefanova M, Velinova D, Marinov S P, et al. The composition of lignite humic acids[J]. Fuel, 1993, 72(5): 681-684. [19] Janos P. Separation methods in the chemistry of humic substances[J]. Journal of Chromatography A, 2003, 983(1-2): 1-18. [20] Pastorelli C, Formaro L, Ricca G, et al. Electrochemical behavior of the humic acid from leonardite[J]. Colloids and Surfaces B: Biointerfaces, 1999, 13(3): 127-134. [21] Chilom G, Chilom O, Rice J A. Exploring the high-mass components of humic acid by laser desorption ionization mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2008, 22(10): 1528-1532. [22] Peña-Méndez E M, Gajdošová D, Novotná K, et al. Mass spectrometry of humic substances of different origin including those from Antarctica: A comparative study[J]. Talanta, 2005, 67(5): 880-890. [23] Baigorri R, Zamarreno A M, Fuentes M, et al. Multivariate statistical analysis of mass spectra as a tool for the classification of the main humic substances according to their structural and conformational features[J]. Journal of Agricultural and Food Chemistry, 2008, 56(14): 5480-5487. [24] Cozzolino A, Conte P, Piccolo A. Conformational changes of humic substances induced by some hydroxy-, keto-, and sulfonic acids[J]. Soil Biology & Biochemistry, 2001, 33(4-5): 563-571. [25] Olivella M A, del Río J C, Palacios J, et al. Characterization of humic acid from leonardite coal: An integrated study of PY-GC-MS, XPS and XANES techniques[J]. Journal of Analytical and Applied Pyrolysis, 2002, 63(1): 59-68. [26] Grasset L, Guignard C, Ambles A. Free and esterified aliphatic carboxylic acids in humin and humic acids from a peat sample as revealed by pyrolysis with tetramethylammonium hydroxide or tetraethylammonium acetate[J]. Organic Geochemistry, 2002, 33(3): 181-188. [27] Rozenbaha I, Odham G, Järnberg U, et al. Characterisation of humic substances by acid catalysed transesterification[J]. Analytica Chimica Acta, 2002, 452(1): 105-114. [28] 郑平. 煤炭腐植酸的生产和应用[M]. 北京: 化学工业出版社, 1991: 66-100. [29] Linder P W, Murray K. Statistical determination of the molecular structure and the metal binding sites of fulvic acids[J]. Science of the Total Environment, 1987, 64(1-2): 149-161. [30] 程亮, 张保林, 徐丽, 等. 腐殖酸热分解动力学[J]. 化工学报, 2014, 65(9): 3470-3478. [31] Schulten H R, Schnitzer M. A state of the art structural concept for humic substances[J]. Naturwissenschaften, 1993, 80(1): 29-30. [32] Schulten H R, Leinweber P. New insights into organic-mineral particles: Composition, properties and models of molecular structure[J].Biology and Fertility of Soils, 2000, 30(5-6): 399-432. [33] Jansen S A, Malaty M, Nwabara S, et al. Structural modeling in humic acids[J]. Materials Science and Engineering C, 1996, 4(3): 175-179. [34] Sutton R, Sposito G. Molecular structure in soil humic substances: The new view[J]. Environmental Science & Technology, 2005, 39(23): 9009-9015. [35] Giovanela M, Crespo J S, Antunes M, et al. Chemical and spectroscopic characterization of humic acids extracted from the bottom sediments of a Brazilian subtropical microbasin[J]. Journal of Molecular Structure, 2010, 981(1-3): 111-119. [36] Allard B. A comparative study on the chemical composition of humic acids from forest soil, agricultural soil and lignite deposit Bound lipid, carbohydrate and amino acid distributions[J]. Geoderma, 2006, 130(1-2): 77-96. [37] Kucerík J, Kovár J, Pekar M. Thermoanalytical investigation of lignite humic acids fractions[J]. Journal of Thermal Analysis and Calorimetry, 2004, 76(1): 55-65. [38] Francioso O, Montecchio D, Gioacchini P, et al. Thermal analysis (TG-DTA) and isotopic characterization (13C-15N) of humic acids from different origins[J]. Applied Geochemistry, 2005, 20(3): 537-544. [39] Rice J A, MacCarthy P. Disaggregation and characterization of humin[J]. Science of the Total Environment, 1992, 117-118: 83-88. [40] Peuravuori J, Simpson A J, Lam B, et al. Structural features of lignite humic acid in light of NMR and thermal degradation experiments[J]. Journal of Molecular Structure, 2007, 826(2-3): 131-142. [41] Peuravuori J, Žbánková P, Pihlaja K. Aspects of structural features in lignite and lignite humic acids[J]. Fuel Processing Technology, 2006, 87(9): 829-839. [42] Nasir Saqib, Sarfaraz Tahira B, Vincent Verheyen T, et al. Structural elucidation of humic acids extracted from Pakistani lignite using spectroscopic and thermal degradative techniques[J]. Fuel Processing Technology, 2011, 92(5): 983-991. [43] Demirbas A. Humic acid derivatives (HAD) from low rank Turkish brown coals[J]. Energy Sources, Part A, 2002, 24(2): 27-133. [44] Wood S A. The role of humic substances in the transport and fixation of metals of economic interest (Au, Pt, Pd, U, V)[J]. Ore Geology Reviews, 1996, 11(1-3): 1-31. [45] Karim S, Okuyama Y, Aoyama M. Separation and characterization of the constituents of compost and soil humic acids by two-dimensional electrophoresis[J]. Soil Science and Plant Nutrition, 2013, 59(2): 130-141. [46] Cavani L, Ciavatta C, Gessa C. Identification of organic matter from peat, leonardite and lignite fertilisers using humification parameters and electrofocusing[J]. Bioresource Technology, 2003, 86(1): 45-52. [47] Alvarez-Puebla R A, Aroca R F, Valenzuela-Calahorro C, et al. Retention of cobalt on a humin derived from brown coal[J]. Journal of Hazardous Materials, 2006, B135(1): 122-128. [48] Pehlivan E, Arslan G. Comparison of adsorption capacity of young brown coals and humic acids prepared from different coal mines in Anatolia[J]. Journal of Hazardous Materials, 2006, B138(2): 401-408. [49] Guardado I, Urrutia O, Garcia-Mina J M. Methodological approach to the study of the formation and physicochemical properties of phosphate-metal-humic complexes in solution[J]. Journal of Agricultural and Food Chemistry, 2005, 53(22): 8673-8678. [50] Riggle J, Wandriszka R von. Binding of inorganic phosphate to dissolved metal humates[J]. Talanta, 2005, 66(2): 372-375. [51] Chassapis K, Roulia M, Tsirigoti D. Chemistry of metal-humic complexes contained in Megalopolis lignite and potential application in modern organomineral fertilization[J]. International Journal of Coal Geology, 2009, 78(4): 288-295. [52] Jezierski A, Czechowski F, Jerzykiewicz M, et al. EPR investigations of structure of humic acids from compost, soil, peat and soft brown coal upon oxidation and metal uptake[J]. Applied Magnetic Resonance, 2000, 18(1): 127-136. [53] Moeser C, Kautenburger R, Beck H P. Complexation of europium and uranium by humic acids analyzed by capillary electrophoresis- inductively coupled plasma mass spectrometry[J]. Electrophoresis, 2012, 33(9-10): 1482-1487. [54] Liu G L, Cai Y. Studying arsenite-humic acid complexation using size exclusion chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Hazardous Materials, 2013, 262: 1223- 1229. [55] Siripinyanond A, Worapanyanond S, Shiowatana J. Field-flow fractionation-inductively coupled plasma mass spectrometry: An alternative approach to investigate metal-humic substancesinteraction [J]. Environmental Science & Technology, 2005, 39(9): 3295-3301. [56] Lobartini J C, Tan K H, Pape C. Dissolution of aluminum and iron phosphate by humic acids[J]. Communications in Soil Science and Plant Analysis, 1998, 29(5-6): 535-544. [57] Hakli O, Dumanli A G, Nalbant A, et al. The conversion of low-rank Kilyos coal to nitrogeneous fertilizers[J]. Energy Sources, Part A, 2011, 33(2): 164-170. [58] Hoffmann K, Huculak-Mączka M. The utilization possibility of waste lignite as a raw material in the process of obtaining humic acids preparations[J]. Polish Journal of Chemical Technology, 2012, 14(4): 1-6. [59] Chassapis K, Roulia M, Nika G. Fe(Ⅲ)-humate complexes from Megalopolis peaty lignite: A novel eco-friendly fertilizer[J]. Fuel, 2010, 89(7): 1480-1484. [60] Guardado I, Urrutia O, Garcia-Mina J M. Some structural and electronic features of the interaction of phosphate with metal-humic complexes[J]. Journal of Agricultural and Food Chemistry, 2008, 56(3): 1035-1042. [61] 张允湘. 磷肥及复合肥料工艺学[M]. 北京: 化学工业出版社, 2008: 296-300. [62] 王曰鑫, 李成学. 绿色环保型腐植酸磷肥[M]. 北京: 化学工业出版社, 2009: 95-105. [63] Perassi I, Borgnino L. Adsorption and surface precipitation of phosphate onto CaCO3-montmorillonite: Effect of pH, ionic strength and competition with humic acid[J]. Geoderma, 2014, 232-234: 600-608. [64] Urrutia O, Erro J, Guardado I, et al. Physico-chemical characterization of humic-metal-phosphate complexes and their potential application to the manufacture of new types of phosphate-based fertilizers[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(2): 128-136. [65] Riggle J, von Wandriszka R. 31P NMR peak width in humate- phosphate complexes[J]. Talanta, 2007, 73(5): 953-958. [66] Erro J Urrutia O, Baigorri R, et al. Organic complexed superphosphates (CSP): Physicochemical characterization and agronomical properties[J]. Journal of Agricultural and Food Chemistry, 2012, 60(8): 2008-2017. [67] Erro J, Urrutia O, Francisco S S, et al. Development and agronomical validation of new fertilizer compositions of high bioavailability and reduced potential nutrient losses[J]. Journal of Agricultural and Food Chemistry, 2007, 55(19): 7831-7839. [68] 张敏, 胡兆平, 李新柱, 等. 腐植酸肥料的研究进展及前景展望[J]. 磷肥与复肥, 2014, 29(1): 38-40. [69] Fujisawa N, Fukushima M, Yamamoto M. Structural alterations of humic acid fractions in a steel slag-compost fertilizer during fertilization. Analysis by pyrolysis/methylation-gas chromatography/ mass spectrometry[J]. Journal of Analytical and Applied Pyrolysis, 2012, 95: 126-133. |