化工进展 ›› 2022, Vol. 41 ›› Issue (7): 3689-3706.DOI: 10.16085/j.issn.1000-6613.2021-1694
杨靖1(), 范议议1, 王赛娣1, 王福凯1, 孟秀霞1(), 杨乃涛1(), 刘少敏2
收稿日期:
2021-08-09
修回日期:
2021-10-21
出版日期:
2022-07-25
发布日期:
2022-07-23
通讯作者:
孟秀霞,杨乃涛
作者简介:
杨靖(1998—),女,硕士研究生,研究方向为水处理,E-mail:基金资助:
YANG Jing1(), FAN Yiyi1, WANG Saidi1, WANG Fukai1, MENG Xiuxia1(), YANG Naitao1(), LIU Shaomin2
Received:
2021-08-09
Revised:
2021-10-21
Online:
2022-07-25
Published:
2022-07-23
Contact:
MENG Xiuxia,YANG Naitao
摘要:
层状双金属氢氧化物(LDH)是磷酸盐去除的良好吸附剂,具有表面易改性、电荷可调、层间距可控、吸附能力强和吸附速度快的特点,能够有效解决水体富营养化问题。本文从LDH除磷性能的优化出发,综述了LDH的结构特征、除磷机理、制备方法、剥离方法的前沿理论和应用案例;基于目前LDH用作磷酸盐吸附剂面临着易团聚、胶体溶液不稳定、性能受控于pH以及难回收等问题,分析了磁性LDH、生物炭/LDH、GO(rGO)/LDH等复合材料的复合方法和性能改进方案,指出了LDH复合改性和LDH膜材料的研究新趋势,以及主要研究重点与热点。希望本文能够为LDH在水处理领域的研究提供新思路,为深入优化LDH吸附和膜分离性能提供理论支持和方向引导。
中图分类号:
杨靖, 范议议, 王赛娣, 王福凯, 孟秀霞, 杨乃涛, 刘少敏. 二维层状双金属氢氧化物在去除磷酸盐中的应用[J]. 化工进展, 2022, 41(7): 3689-3706.
YANG Jing, FAN Yiyi, WANG Saidi, WANG Fukai, MENG Xiuxia, YANG Naitao, LIU Shaomin. Layered double hydroxide (LDH) for phosphate removal[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3689-3706.
1 | 王昶, 吕晓翠, 贾青竹, 等. 含磷废水处理技术研究进展[J]. 水处理技术, 2009, 35(12): 16-21. |
WANG Chang, Xiaocui LYU, JIA Qingzhu, et al. Progress of phosphorus-containing wastewater treatment technology[J]. Technology of Water Treatment, 2009, 35(12): 16-21. | |
2 | LIU R B, HAO X D, CHEN Q, et al. Research advances of tetrasphaera in enhanced biological phosphorus removal: a review[J]. Water Research, 2019, 166: 115003. |
3 | REN J, LI N, WEI H, et al. Efficient removal of phosphorus from turbid water using chemical sedimentation by FeCl3 in conjunction with a starch-based flocculant[J]. Water Research, 2020, 170: 115361. |
4 | SU Y, CUI H, LI Q, et al. Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles[J]. Water Research, 2013, 47(14): 5018-5026. |
5 | NIR O, SENGPIEL R, WESSLING M. Closing the cycle: phosphorus removal and recovery from diluted effluents using acid resistive membranes[J]. Chemical Engineering Journal, 2018, 346: 640-648. |
6 | 郑向勇, 严立, 叶海仁, 等. 电化学技术用于污水脱氮除磷的研究进展[J]. 水处理技术, 2010, 36(1): 20-24. |
ZHENG Xiangyong, YAN Li, YE Hairen, et al. Progress on the removal of nitrogen and phosphorus from wastewater by electrochemical methods[J]. Technology of Water Treatment, 2010, 36(1): 20-24. | |
7 | KUMAR P S, KORVING L, VAN LOOSDRECHT M C M, et al. Adsorption as a technology to achieve ultra-low concentrations of phosphate: research gaps and economic analysis[J]. Water Research X, 2019, 4: 100029. |
8 | HONG S P, YOON H, LEE J, et al. Selective phosphate removal using layered double hydroxide/reduced graphene oxide (LDH/rGO) composite electrode in capacitive deionization[J]. Journal of Colloid and Interface Science, 2020, 564: 1-7. |
9 | 杨言言, 李永国, 祝小雯, 等. 电活性镍钴双金属氧化物高选择性去除/回收水中磷酸盐离子[J]. 无机材料学报, 2021, 36(3): 292-298. |
YANG Yanyan, LI Yongguo, ZHU Xiaowen, et al. Potential induced reversible removal/recovery of phosphate anions with high selectivity using an electroactive NiCo-layered double oxide film[J]. Journal of Inorganic Materials, 2021, 36(3): 292-298. | |
10 | GUO Y X, JIA Z Q. Novel sandwich structure adsorptive membranes for removal of 4-nitrotoluene from water[J]. Journal of Hazardous Materials, 2016, 317: 295-302. |
11 | 朱加乐, 王欣泽, 沈剑, 等. 十四烷基三甲基溴化铵改性活性炭吸附水中硝酸盐和磷酸盐[J]. 化工进展, 2017, 36(7): 2676-2683. |
ZHU Jiale, WANG Xinze, SHEN Jian, et al. Adsorption of nitrate and phosphate by MTAB-modified activated carbon[J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2676-2683. | |
12 | FIGUEIREDO H, QUINTELAS C. Tailored zeolites for the removal of metal oxyanions: overcoming intrinsic limitations of zeolites[J]. Journal of Hazardous Materials, 2014, 274: 287-299. |
13 | 衡忠暄, 单超, 花铭, 等. 不同价态无机磷在金属氧化物表面吸附的第一性原理研究[J]. 中国科学: 技术科学, 2021, 51(5): 591-600. |
HENG Zhongxuan, SHAN Chao, HUA Ming, et al. Adsorption of inorganic phosphorus of different valences on metal oxides: a first-principles study[J]. Scientia Sinica (Technologica), 2021, 51(5): 591-600. | |
14 | 崔婉莹, 艾恒雨, 张世豪, 等. 改性吸附剂去除废水中磷的应用研究进展[J]. 化工进展, 2020, 39(10): 4210-4226. |
CUI Wanying, AI Hengyu, ZHANG Shihao, et al. Research status on application of modified adsorbents in phosphorus removal from wastewater[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4210-4226. | |
15 | DAS J, PATRA B S, BALIARSINGH N, et al. Adsorption of phosphate by layered double hydroxides in aqueous solutions[J]. Applied Clay Science, 2006, 32(3/4): 252-260. |
16 | ZHOU H G, TAN Y L, YANG Y M, et al. Application of FeMgMn layered double hydroxides for phosphate anions adsorptive removal from water[J]. Applied Clay Science, 2021, 200: 105903. |
17 | GOH K H, LIM T T, DONG Z L. Application of layered double hydroxides for removal of oxyanions: a review[J]. Water Research, 2008, 42(6/7): 1343-1368. |
18 | WANG J, ZHU R R, GAO B, et al. The enhanced immune response of hepatitis B virus DNA vaccine using SiO2@LDH nanoparticles as an adjuvant[J]. Biomaterials, 2014, 35(1): 466-478. |
19 | LI C M, WEI M, EVANS D G, et al. Layered double hydroxide-based nanomaterials as highly efficient catalysts and adsorbents[J]. Small, 2014, 10(22): 4469-4486. |
20 | 吴俊麟, 林建伟, 詹艳慧, 等. 镁铁层状双金属氢氧化物对磷酸盐的吸附作用及对内源磷释放的控制效果及机制[J]. 环境科学, 2020, 41(1): 273-283. |
WU Junlin, LIN Jianwei, ZHAN Yanhui, et al. Adsorption of phosphate on Mg/Fe layered double hydroxides (Mg/Fe-LDH) and use of Mg/Fe-LDH as an amendment for controlling phosphorus releasefrom sediments[J]. Environmental Science, 2020, 41(1): 273-283. | |
21 | SALOMÃO R, MILENA L M, WAKAMATSU M H, et al. Hydrotalcite synthesis via co-precipitation reactions using MgO and Al(OH)3 precursors[J]. Ceramics International, 2011, 37(8): 3063-3070. |
22 | 孙金陆, 甄卫军, 李进. LDHs材料的结构、性质及其应用研究进展[J]. 化工进展, 2013, 32(3): 610-616. |
SUN Jinlu, ZHEN Weijun, LI Jin. Structure, properties and applications of LDHs[J]. Chemical Industry and Engineering Progress, 2013, 32(3): 610-616. | |
23 | 王卫东, 郝瑞霞, 张晓娴, 等. 高效磷吸附剂Mg/Al-LDO的制备及除磷机制[J]. 环境科学, 2017, 38(2): 572-579. |
WANG Weidong, HAO Ruixia, ZHANG Xiaoxian, et al. Preparation and phosphorus removal mechanism of highly efficient phosphorus adsorbent Mg/Al-LDO[J]. Environmental Science, 2017, 38(2): 572-579. | |
24 | ZHANG X Z, SHEN J Y, MA Y N, et al. Highly efficient adsorption and recycle of phosphate from wastewater using flower-like layered double oxides and their potential as synergistic flame retardants[J]. Journal of Colloid and Interface Science, 2020, 562: 578-588. |
25 | CHENG X, HUANG X R, WANG X Z, et al. Influence of calcination on the adsorptive removal of phosphate by Zn-Al layered double hydroxides from excess sludge liquor[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 516-523. |
26 | YANG K, YAN L G, YANG Y M, et al. Adsorptive removal of phosphate by Mg-Al and Zn-Al layered double hydroxides: Kinetics, isotherms and mechanisms[J]. Separation and Purification Technology, 2014, 124: 36-42. |
27 | ASHEKUZZAMAN S M, JIANG J Q. Study on the sorption-desorption-regeneration performance of Ca-, Mg- and CaMg-based layered double hydroxides for removing phosphate from water[J]. Chemical Engineering Journal, 2014, 246: 97-105. |
28 | KUZAWA K, JUNG Y J, KISO Y, et al. Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent[J]. Chemosphere, 2006, 62(1): 45-52. |
29 | CHENG X, HUANG X R, WANG X Z, et al. Phosphate adsorption from sewage sludge filtrate using zinc-aluminum layered double hydroxides[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 958-964. |
30 | YAN H L, CHEN Q W, LIU J H, et al. Phosphorus recovery through adsorption by layered double hydroxide nano-composites and transfer into a struvite-like fertilizer[J]. Water Research, 2018, 145: 721-730. |
31 | CHITRAKAR R, TEZUKA S, HOSOKAWA J, et al. Uptake properties of phosphate on a novel Zr-modified MgFe-LDH(CO3)[J]. Journal of Colloid and Interface Science, 2010, 349(1): 314-320. |
32 | DRENKOVA-TUHTAN A, SCHNEIDER M, MANDEL K, et al. Influence of cation building blocks of metal hydroxide precipitates on their adsorption and desorption capacity for phosphate in wastewater—A screening study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 488: 145-153. |
33 | HE H M, KANG H L, MA S L, et al. High adsorption selectivity of ZnAl layered double hydroxides and the calcined materials toward phosphate[J]. Journal of Colloid and Interface Science, 2010, 343(1): 225-231. |
34 | HATAMI H, FOTOVAT A, HALAJNIA A. Comparison of adsorption and desorption of phosphate on synthesized Zn-Al LDH by two methods in a simulated soil solution[J]. Applied Clay Science, 2018, 152: 333-341. |
35 | ZHAO Y, LI F, ZHANG R, et al. Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps[J]. Chemistry of Materials, 2002, 14(10): 4286-4291. |
36 | IYI N, MATSUMOTO T, KANEKO Y, et al. Deintercalation of carbonate ions from a hydrotalcite-like compound: enhanced decarbonation using acid-salt mixed solution[J]. Chemistry of Materials, 2004, 16(15): 2926-2932. |
37 | IYI N, OKAMOTO K, KANEKO Y, et al. Effects of anion species on deintercalation of carbonate ions from hydrotalcite-like compounds[J]. Chemistry Letters, 2005, 34(7): 932-933. |
38 | COSTANTINO U, MARMOTTINI F, NOCCHETTI M, et al. New synthetic routes to hydrotalcite-like compounds-characterisation and properties of the obtained materials[J]. European Journal of Inorganic Chemistry, 1998, 10: 1439-1446. |
39 | CHUBAR N, GERDA V, MEGANTARI O, et al. Applications versus properties of Mg-Al layered double hydroxides provided by their syntheses methods: alkoxide and alkoxide-free sol-gel syntheses and hydrothermal precipitation[J]. Chemical Engineering Journal, 2013, 234: 284-299. |
40 | CHUBAR N, GILMOUR R, GERDA V, et al. Layered double hydroxides as the next generation inorganic anion exchangers: synthetic methods versus applicability[J]. Advances in Colloid and Interface Science, 2017, 245: 62-80. |
41 | LI Z C, YANG B J, ZHANG S N, et al. A novel approach to hierarchical sphere-like ZnAl-layered double hydroxides and their enhanced adsorption capability[J]. Journal of Materials Chemistry A, 2014, 2(26): 10202. |
42 | RIVES V, ANGELES ULIBARRI M. Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates[J]. Coordination Chemistry Reviews, 1999, 181(1): 61-120. |
43 | XU Y F, DAI Y C, ZHOU J Z, et al. Removal efficiency of arsenate and phosphate from aqueous solution using layered double hydroxide materials: intercalation vs. precipitation[J]. Journal of Materials Chemistry, 2010, 20(22): 4684. |
44 | CHITRAKAR R, TEZUKA S, SONODA A, et al. Synthesis and phosphate uptake behavior of Zr4+ incorporated MgAl-layered double hydroxides[J]. Journal of Colloid and Interface Science, 2007, 313(1): 53-63. |
45 | KOILRAJ P, KANNAN S. Phosphate uptake behavior of ZnAlZr ternary layered double hydroxides through surface precipitation[J]. Journal of Colloid and Interface Science, 2010, 341(2): 289-297. |
46 | HIBINO T, OHYA H. Synthesis of crystalline layered double hydroxides: precipitation by using urea hydrolysis and subsequent hydrothermal reactions in aqueous solutions[J]. Applied Clay Science, 2009, 45(3): 123-132. |
47 | ZHOU J B, YANG S L, YU J G, et al. Novel hollow microspheres of hierarchical zinc-aluminum layered double hydroxides and their enhanced adsorption capacity for phosphate in water[J]. Journal of Hazardous Materials, 2011, 192(3): 1114-1121. |
48 | BUKHTIYAROVA M V. A review on effect of synthesis conditions on the formation of layered double hydroxides[J]. Journal of Solid State Chemistry, 2018, 269: 494-506. |
49 | 谢晖, 矫庆泽, 段雪. 镁铝型水滑石水热合成[J]. 应用化学, 2001, 18(1): 70-72. |
XIE Hui, JIAO Qingze, DUAN Xue. Synthesis of hydrotalcite by hydrothermal method[J]. Chinese Journal of Applied Chemistry, 2001, 18(1): 70-72. | |
50 | REICHLE W T. Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite)[J]. Solid State Ionics, 1986, 22(1): 135-141. |
51 | 李天, 郝晓杰, 白莎, 等. 单层类水滑石纳米片的可控合成及规模生产展望[J]. 物理化学学报, 2020, 36(9): 71-87. |
LI Tian, HAO Xiaojie, BAI Sha, et al. Controllable synthesis and scale-up production prospect of monolayer layered double hydroxide nanosheets[J]. Acta Physico-Chimica Sinica, 2020, 36(9): 71-87. | |
52 | 刘晨, 张美一, 潘纲. 超薄水滑石纳米片除磷效果与机理[J]. 环境工程学报, 2018, 12(9): 2446-2456. |
LIU Chen, ZHANG Meiyi, PAN Gang. Efficiency and mechanism of phosphate removal by ultrathin layered double hydroxide nanosheets[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2446-2456. | |
53 | ADACHI-PAGANO M, FORANO C, BESSE J P. Delamination of layered double hydroxides by use of surfactants[J]. Chemical Communications, 2000(1): 91-92. |
54 | HIBINO T, JONES W. New approach to the delamination of layered double hydroxides[J]. Journal of Materials Chemistry, 2001, 11(5): 1321-1323. |
55 | HIBINO T, KOBAYASHI M. Delamination of layered double hydroxides in water[J]. Journal of Materials Chemistry, 2005, 15(6): 653. |
56 | HIBINO T. A new method for preparation of nanoplates of Zn-Al layered double hydroxides[J]. Applied Clay Science, 2011, 54(1): 83-89. |
57 | IYI N, EBINA Y, SASAKI T. Water-swellable MgAl-LDH (layered double hydroxide) hybrids: synthesis, characterization, and film preparation[J]. Langmuir, 2008, 24(10): 5591-5598. |
58 | LUENGO C V, VOLPE M A, AVENA M J. High sorption of phosphate on Mg-Al layered double hydroxides: kinetics and equilibrium[J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 4656-4662. |
59 | LI L, MA R Z, EBINA Y, et al. Positively charged nanosheets derived via total delamination of layered double hydroxides[J]. Chemistry of Materials, 2005, 17(17): 4386-4391. |
60 | EVANS D G, SLADE R C T. Structural aspects of layered double hydroxides[M]//Structure and Bonding. Berlin/Heidelberg: Springer-Verlag, 2006: 1–87. |
61 | WANG Q, O'HARE D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J]. Chemical Reviews, 2012, 112(7): 4124-4155. |
62 | LIU C, ZHANG M Y, PAN G, et al. Phosphate capture by ultrathin MgAl layered double hydroxide nanoparticles[J]. Applied Clay Science, 2019, 177: 82-90. |
63 | ZHAN T R, ZHANG Y M, YANG Q, et al. Ultrathin layered double hydroxide nanosheets prepared from a water-in-ionic liquid surfactant-free microemulsion for phosphate removal from aquatic systems[J]. Chemical Engineering Journal, 2016, 302: 459-465. |
64 | YU J F, MARTIN B R, CLEARFIELD A, et al. One-step direct synthesis of layered double hydroxide single-layer nanosheets[J]. Nanoscale, 2015, 7(21): 9448-9451. |
65 | MA R Z, LIU Z P, LI L, et al. Exfoliating layered double hydroxides in formamide: a method to obtain positively charged nanosheets[J]. Journal of Materials Chemistry, 2006, 16(39): 3809. |
66 | HU G, WANG N, O'HARE D, et al. One-step synthesis and AFM imaging of hydrophobic LDH monolayers[J]. Chemical Communications (Cambridge, England), 2006(3): 287-289. |
67 | SMITH G D, DONELAN C E, BARDEN R E. Oil-continuous microemulsions composed of hexane, water, and 2-propanol[J]. Journal of Colloid and Interface Science, 1977, 60(3): 488-496. |
68 | LIU R, WANG Y Y, LIU D D, et al. Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation[J]. Advanced Materials, 2017, 29(30): 1701546. |
69 | WANG Y Y, ZHANG Y Q, LIU Z J, et al. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts[J]. Angewandte Chemie International Edition, 2017, 56(21): 5867-5871. |
70 | ZHENG Y L, CHEN Y H. Preparation of polypropylene/Mg-Al layered double hydroxides nanocomposites through wet pan-milling: formation of a second-staging structure in LDHs intercalates[J]. RSC Advances, 2017, 7(3): 1520-1530. |
71 | LI J P, ZHANG P, ZHAO X L, et al. Structure-controlled Co-Al layered double hydroxides/reduced graphene oxide nanomaterials based on solid-phase exfoliation technique for supercapacitors[J]. Journal of Colloid and Interface Science, 2019, 549: 236-245. |
72 | CUI S H, ZHANG R, PENG Y T, et al. New insights into ball milling effects on MgAl-LDHs exfoliation on biochar support: a case study for cadmium adsorption[J]. Journal of Hazardous Materials, 2021, 416: 126258. |
73 | YAN L G, YANG K, SHAN R R, et al. Kinetic, isotherm and thermodynamic investigations of phosphate adsorption onto core-shell Fe3O4@LDHs composites with easy magnetic separation assistance[J]. Journal of Colloid and Interface Science, 2015, 448: 508-516. |
74 | KOILRAJ P, SASAKI K. Fe3O4/MgAl-NO3 layered double hydroxide as a magnetically separable sorbent for the remediation of aqueous phosphate[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 984-991. |
75 | LU L, LI J, NG D H L, et al. Synthesis of novel hierarchically porous Fe3O4@MgAl-LDH magnetic microspheres and its superb adsorption properties of dye from water[J]. Journal of Industrial and Engineering Chemistry, 2017, 46: 315-323. |
76 | CHEN D, LI Y, ZHANG J, et al. Magnetic Fe3O4/ZnCr-layered double hydroxide composite with enhanced adsorption and photocatalytic activity[J]. Chemical Engineering Journal, 2012, 185/186: 120-126. |
77 | LEE C G, KIM S B. Magnetic alginate-layered double hydroxide composites for phosphate removal[J]. Environmental Technology, 2013, 34(19): 2749-2756. |
78 | SHAO M F, NING F Y, ZHAO J W, et al. Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins[J]. Journal of the American Chemical Society, 2012, 134(2): 1071-1077. |
79 | LI F H, JIN J, SHEN Z Y, et al. Removal and recovery of phosphate and fluoride from water with reusable mesoporous Fe3O4@mSiO2@mLDH composites as sorbents[J]. Journal of Hazardous Materials, 2020, 388: 121734. |
80 | BEAN C P, LIVINGSTON J D. Superparamagnetism[J]. Journal of Applied Physics, 1959, 30(4): S120-S129. |
81 | FERREIRA R V, PEREIRA I L S, CAVALCANTE L C D, et al. Synthesis and characterization of silica-coated nanoparticles of magnetite[J]. Hyperfine Interactions, 2010, 195(1/2/3): 265-274. |
82 | MANDEL K, HUTTER F, GELLERMANN C, et al. Modified superparamagnetic nanocomposite microparticles for highly selective Hg(Ⅱ) or Cu(Ⅱ) separation and recovery from aqueous solutions[J]. ACS Applied Materials & Interfaces, 2012, 4(10): 5633-5642. |
83 | MANDEL K, DRENKOVA-TUHTAN A, HUTTER F, et al. Layered double hydroxide ion exchangers on superparamagnetic microparticles for recovery of phosphate from waste water[J]. Journal of Materials Chemistry A, 2013, 1(5): 1840-1848. |
84 | DRENKOVA-TUHTAN A, MANDEL K, PAULUS A, et al. Phosphate recovery from wastewater using engineered superparamagnetic particles modified with layered double hydroxide ion exchangers[J]. Water Research, 2013, 47(15): 5670-5677. |
85 | SHENG T C, ZHANG Z, HU Y C, et al. Adsorption of phosphorus by using magnetic Mg-Al-, Zn-Al-and Mg-Fe-layered double hydroxides: comparison studies and adsorption mechanism[J]. Environmental Science and Pollution Research, 2019, 26(7): 7102-7114. |
86 | QIAO W C, BAI H, TANG T H, et al. Recovery and utilization of phosphorus in wastewater by magnetic Fe3O4/Zn-Al-Fe-La layered double hydroxides(LDHs)[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577: 118-128. |
87 | DRENKOVA-TUHTAN A, SCHNEIDER M, FRANZREB M, et al. Pilot-scale removal and recovery of dissolved phosphate from secondary wastewater effluents with reusable ZnFeZr adsorbent @ Fe3O4/SiO2 particles with magnetic harvesting[J]. Water Research, 2017, 109: 77-87. |
88 | LIN Z G, CHEN J. Magnetic Fe3O4@MgAl-LDH@La(OH)3 composites with a hierarchical core-shell structure for phosphate removal from wastewater and inhibition of labile sedimentary phosphorus release[J]. Chemosphere, 2021, 264: 128551. |
89 | LU X, FAN C X, HE W, et al. Sulfur-containing amino acid methionine as the precursor of volatile organic sulfur compounds in algea-induced black bloom[J]. Journal of Environmental Sciences, 2013, 25(1): 33-43. |
90 | LEHMANN J. A handful of carbon[J]. Nature, 2007, 447(7141): 143-144. |
91 | NOBAHARAN K, BAGHERI NOVAIR S, ASGARI LAJAYER B, et al. Phosphorus removal from wastewater: the potential use of biochar and the key controlling factors[J]. Water, 2021, 13(4): 517. |
92 | ZHANG M, GAO B, YAO Y, et al. Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition[J]. Chemosphere, 2013, 92(8): 1042-1047. |
93 | MEILI L, LINS P V, ZANTA C L P S, et al. MgAl-LDH/Biochar composites for methylene blue removal by adsorption[J]. Applied Clay Science, 2019, 168: 11-20. |
94 | ZHANG M, GAO B, FANG J N, et al. Self-assembly of needle-like layered double hydroxide (LDH) nanocrystals on hydrochar: characterization and phosphate removal ability[J]. RSC Advances, 2014, 4(53): 28171-28175. |
95 | TAN X F, LIU Y G, GU Y L, et al. Biochar pyrolyzed from MgAl-layered double hydroxides pre-coated ramie biomass [Boehmeria nivea (L.) Gaud.]: characterization and application for crystal violet removal[J]. Journal of Environmental Management, 2016, 184: 85-93. |
96 | CUI Q L, JIAO G J, ZHENG J Y, et al. Synthesis of a novel magnetic caragana korshinskii biochar/Mg-Al layered double hydroxide composite and its strong adsorption of phosphate in aqueous solutions[J]. RSC Advances, 2019, 9(32): 18641-18651. |
97 | ALAGHA O, MANZAR M S, ZUBAIR M, et al. Comparative adsorptive removal of phosphate and nitrate from wastewater using biochar-MgAl LDH nanocomposites: coexisting anions effect and mechanistic studies[J]. Nanomaterials, 2020, 10(2): 336. |
98 | WAN S, WANG S S, LI Y C, et al. Functionalizing biochar with Mg-Al and Mg-Fe layered double hydroxides for removal of phosphate from aqueous solutions[J]. Journal of Industrial and Engineering Chemistry, 2017,47: 246-253. |
99 | YANG F, ZHANG S S, SUN Y Q, et al. Assembling biochar with various layered double hydroxides for enhancement of phosphorus recovery[J]. Journal of Hazardous Materials, 2019, 365: 665-673. |
100 | JIANG Y H, LI A Y, DENG H, et al. Phosphate adsorption from wastewater using ZnAl-LDO-loaded modified banana straw biochar[J]. Environmental Science and Pollution Research, 2019, 26(18): 18343-18353. |
101 | LI R H, WANG J J, ZHOU B Y, et al. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios[J]. Science of the Total Environment, 2016, 559: 121-129. |
102 | GARCIA-GALLASTEGUI A, IRURETAGOYENA D, GOUVEA V, et al. Graphene oxide as support for layered double hydroxides: enhancing the CO2 adsorption capacity[J]. Chemistry of Materials, 2012, 24(23): 4531-4539. |
103 | WEN T, WU X L, TAN X L, et al. One-pot synthesis of water-swellable Mg-Al layered double hydroxides and graphene oxide nanocomposites for efficient removal of As(Ⅴ) from aqueous solutions[J]. ACS Applied Materials & Interfaces, 2013, 5(8): 3304-3311. |
104 | CHEN D, WANG X Y, LIU T X, et al. Electrically conductive poly(vinyl alcohol) hybrid films containing graphene and layered double hydroxide fabricated via layer-by-layer self-assembly[J]. ACS Applied Materials & Interfaces, 2010, 2(7): 2005-2011. |
105 | XU J, GAI S L, HE F, et al. A sandwich-type three-dimensional layered double hydroxide nanosheet array/graphene composite: fabrication and high supercapacitor performance[J]. Journal of Materials Chemistry A, 2014, 2(4): 1022-1031. |
106 | LAI Y T, LIU W T, CHEN L J, et al. Electro-assisted selective uptake/release of phosphate using a graphene oxide/MgMn-layered double hydroxide composite[J]. Journal of Materials Chemistry A, 2019, 7(8): 3962-3970. |
107 | LAI Y T, HUANG Y S, CHEN C H, et al. Green treatment of phosphate from wastewater using a porous bio-templated graphene oxide/MgMn-layered double hydroxide composite[J]. iScience, 2020, 23(5): 101065. |
108 | SOLTANI R, PELALAK R, PISHNAMAZI M, et al. A novel and facile green synthesis method to prepare LDH/MOF nanocomposite for removal of Cd(Ⅱ) and Pb(Ⅱ)[J]. Scientific Reports, 2021, 11: 1609. |
109 | FENG X F, YU Z X, LONG R X, et al. Self-assembling 2D/2D (MXene/LDH) materials achieve ultra-high adsorption of heavy metals Ni2+ through terminal group modification[J]. Separation and Purification Technology, 2020, 253: 117525. |
110 | 陈虹芸, 徐赛龙, 陈旭, 等. 层状双羟基复合金属氧化物薄膜的研究进展[J]. 中国科学(B辑: 化学), 2008, 38(8): 659-667. |
CHEN Hongyun, XU Sailong, CHEN Xu, et al. Research progress of layered dihydroxyl composite metal oxide films[J]. Science in China (Series B: Chemistry), 2008, 38(8): 659-667. | |
111 | CHEN L, LIU F, WU Y, et al. In situ formation of La(OH)3-poly(vinylidene fluoride) composite filtration membrane with superior phosphate removal properties[J]. Chemical Engineering Journal, 2018, 347: 695-702. |
112 | ABIDIN M N Z, GOH P, ISMAIL A F, et al. Polysulfone/iron oxide nanoparticles ultrafiltration membrane for adsorptive removal of phosphate from aqueous solution[J]. Journal of Membrane Science and Research, 2019, 5(1): 20-24. |
113 | JIA Z Q, HAO S, LU X Y. Exfoliated Mg-Al-Fe layered double hydroxides/polyether sulfone mixed matrix membranes for adsorption of phosphate and fluoride from aqueous solutions[J]. Journal of Environmental Sciences, 2018, 70: 63-73. |
114 | LU P, LI W J, YANG S, et al. Layered double hydroxide-modified thin-film composite membranes with remarkably enhanced chlorine resistance and anti-fouling capacity[J]. Separation and Purification Technology, 2019, 220: 231-237. |
115 | AREFI-OSKOUI S, KHATAEE A, VATANPOUR V. Effect of solvent type on the physicochemical properties and performance of NLDH/PVDF nanocomposite ultrafiltration membranes[J]. Separation and Purification Technology, 2017, 184: 97-118. |
116 | ZHAO Y, LI N N, YUAN F Z, et al. Preparation and characterization of hydrophilic and antifouling poly(ether sulfone) ultrafiltration membranes modified with Zn-Al layered double hydroxides[J]. Journal of Applied Polymer Science, 2016, 133(39): 43988. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[6] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[7] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[8] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[9] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[10] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[11] | 冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023, 42(7): 3501-3509. |
[12] | 王知彩, 刘伟伟, 周璁, 潘春秀, 闫洪雷, 李占库, 颜井冲, 任世彪, 雷智平, 水恒福. 基于煤基腐殖酸的高效减水剂合成与性能表征[J]. 化工进展, 2023, 42(7): 3634-3642. |
[13] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[14] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[15] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |