化工进展 ›› 2022, Vol. 41 ›› Issue (7): 3676-3688.DOI: 10.16085/j.issn.1000-6613.2021-1683
朱雪丹1(), 姚亚丽1, 马利利1, 王嘉鑫1, 杨杰2, 彭磊1, 何金梅1, 屈孟男1()
收稿日期:
2021-08-09
修回日期:
2021-09-18
出版日期:
2022-07-25
发布日期:
2022-07-23
通讯作者:
屈孟男
作者简介:
朱雪丹(1985—),女,博士研究生,研究方向为仿生功能高分子材料。E-mail:基金资助:
ZHU Xuedan1(), YAO Yali1, MA Lili1, WANG Jiaxin1, YANG Jie2, PENG Lei1, HE Jinmei1, QU Mengnan1()
Received:
2021-08-09
Revised:
2021-09-18
Online:
2022-07-25
Published:
2022-07-23
Contact:
QU Mengnan
摘要:
聚氯乙烯(PVC)是世界上应用最广泛的塑料之一,因其具有化学和机械特性优异、廉价易得等优点而广泛应用于医疗器械制造、建筑、食品和电子等行业。PVC对水的接触角为90°,而在生物医学和金属防腐蚀等领域的应用中,需要PVC达到超疏水性能。因此,PVC基超疏水材料的需求也变得愈加迫切。本文综述了聚氯乙烯基超疏水材料的分类、制备方法和应用领域,对比了不同种类、不同制备方法的聚氯乙烯基超疏水材料的疏水性能优劣,总结出目前该领域的一些问题,主要包括制备工艺仅限于实验室操作、材料的耐磨耐久性及机械强度有待考察等,并指出该领域的发展方向:①开发简单、环保、低成本的大规模制备工艺;②克服PVC材料热、光稳定性差的弱点,发扬其耐腐蚀性好、机械强度高的优点,进一步扩大材料的应用范围。
中图分类号:
朱雪丹, 姚亚丽, 马利利, 王嘉鑫, 杨杰, 彭磊, 何金梅, 屈孟男. 聚氯乙烯基超疏水材料的制备及应用研究进展[J]. 化工进展, 2022, 41(7): 3676-3688.
ZHU Xuedan, YAO Yali, MA Lili, WANG Jiaxin, YANG Jie, PENG Lei, HE Jinmei, QU Mengnan. Progress in preparation and application of superhydrophobic materials based on polyvinyl chloride[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3676-3688.
理论模型 | 二维模型 | 要点 |
---|---|---|
Young方程 | 基于理想光滑平整固体表面,接触角取决于固体表面能 | |
Wenzel模型 | 认为液体能完全进入固体表面的粗糙结构,粗糙度的增加有助于增加疏水固体表面的接触角 | |
Cassie-Baxter方程 | 认为液体与粗糙结构之间会留存空气,使得液滴不会渗透进入表面粗糙结构中,提高固-气接触面积百分比可提高接触角 | |
Cassie-Wenzel过渡态 | Cassie和Wenzel两种状态可以共存也可以在一定情形发生转变,Cassie模式变为Wenzel模式时,表观接触角会降低 |
表1 超疏水基本理论模型对比[4]
理论模型 | 二维模型 | 要点 |
---|---|---|
Young方程 | 基于理想光滑平整固体表面,接触角取决于固体表面能 | |
Wenzel模型 | 认为液体能完全进入固体表面的粗糙结构,粗糙度的增加有助于增加疏水固体表面的接触角 | |
Cassie-Baxter方程 | 认为液体与粗糙结构之间会留存空气,使得液滴不会渗透进入表面粗糙结构中,提高固-气接触面积百分比可提高接触角 | |
Cassie-Wenzel过渡态 | Cassie和Wenzel两种状态可以共存也可以在一定情形发生转变,Cassie模式变为Wenzel模式时,表观接触角会降低 |
PVC膜类型 | 制备方法 | 共混聚合物/无机粒子 | 接触角 | 滑动角 | 应用领域 | 参考文献 |
---|---|---|---|---|---|---|
单一PVC膜 | NIPS(乙醇) | — | 155° | 金属防腐蚀 | [ | |
NIPS(乙醇) | — | 154° | 耐酸碱腐蚀 | [ | ||
NIPS(乙酸) | — | 150°±1.5° | 耐酸碱腐蚀 | [ | ||
NIPS(甲醇、乙醇) | — | 150°±3° | 抗菌 | [ | ||
NIPS(乙醇) | — | 154° | 防生物污垢 | [ | ||
仿生模板法(荷叶) | — | 157°±1.8° | 3°±0.6° | [ | ||
含PVC的聚合物共混膜 | NIPS(水) | PVDF | 152° | 自清洁 | [ | |
溶剂压铸法 | 氟硅共聚物 | 117° | [ | |||
表面沉积 | PTFE | 150° | 除冰 | [ | ||
PVC与无机粒子复合膜 | NIPS(乙醇) | Ag3PO4 | 156°±1° | 2°±1° | 抗菌 | [ |
NIPS(乙醇) | 碳纳米管 | 157° | <5° | [ | ||
NIPS(乙醇) | 疏水SiO2(自购) | 161° | <3° | 抗菌 | [ | |
仿生模板法(荷叶) | 疏水SiO2(HMDS) | 162° | 6° | [ | ||
滴涂法 | 疏水SiO2(HMDS) | 168° | 耐酸碱腐蚀 | [ | ||
喷涂法 | 疏水SiO2(MTMS) | 169°±2° | 6° | 自清洁、透明 | [ | |
旋涂法 | 疏水SiO2(TMCS) | 162° | 金属防腐蚀 | [ | ||
滴涂法 | 石英砂(DEDMS) | 156° | 6° | 耐磨耐久 | [ | |
滴涂法 | 高岭土(硬脂酸) | 156° | <10° | 耐磨耐腐蚀 | [ | |
浸涂法 | CS和ZnO | 154° | 金属防腐蚀 | [ | ||
静电纺丝 | ZnO | 146.39° | 金属防腐蚀 | [ | ||
静电纺丝 | TiO2/石墨烯 | 168.3°/161° | 光电极 | [ |
表2 不同种类、制备方法的聚氯乙烯基超疏水材料的性能对比
PVC膜类型 | 制备方法 | 共混聚合物/无机粒子 | 接触角 | 滑动角 | 应用领域 | 参考文献 |
---|---|---|---|---|---|---|
单一PVC膜 | NIPS(乙醇) | — | 155° | 金属防腐蚀 | [ | |
NIPS(乙醇) | — | 154° | 耐酸碱腐蚀 | [ | ||
NIPS(乙酸) | — | 150°±1.5° | 耐酸碱腐蚀 | [ | ||
NIPS(甲醇、乙醇) | — | 150°±3° | 抗菌 | [ | ||
NIPS(乙醇) | — | 154° | 防生物污垢 | [ | ||
仿生模板法(荷叶) | — | 157°±1.8° | 3°±0.6° | [ | ||
含PVC的聚合物共混膜 | NIPS(水) | PVDF | 152° | 自清洁 | [ | |
溶剂压铸法 | 氟硅共聚物 | 117° | [ | |||
表面沉积 | PTFE | 150° | 除冰 | [ | ||
PVC与无机粒子复合膜 | NIPS(乙醇) | Ag3PO4 | 156°±1° | 2°±1° | 抗菌 | [ |
NIPS(乙醇) | 碳纳米管 | 157° | <5° | [ | ||
NIPS(乙醇) | 疏水SiO2(自购) | 161° | <3° | 抗菌 | [ | |
仿生模板法(荷叶) | 疏水SiO2(HMDS) | 162° | 6° | [ | ||
滴涂法 | 疏水SiO2(HMDS) | 168° | 耐酸碱腐蚀 | [ | ||
喷涂法 | 疏水SiO2(MTMS) | 169°±2° | 6° | 自清洁、透明 | [ | |
旋涂法 | 疏水SiO2(TMCS) | 162° | 金属防腐蚀 | [ | ||
滴涂法 | 石英砂(DEDMS) | 156° | 6° | 耐磨耐久 | [ | |
滴涂法 | 高岭土(硬脂酸) | 156° | <10° | 耐磨耐腐蚀 | [ | |
浸涂法 | CS和ZnO | 154° | 金属防腐蚀 | [ | ||
静电纺丝 | ZnO | 146.39° | 金属防腐蚀 | [ | ||
静电纺丝 | TiO2/石墨烯 | 168.3°/161° | 光电极 | [ |
1 | LAW K Y. Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: getting the basics right[J].The Journal of Physical Chemistry Letters, 2014, 5 (4): 686-688. |
2 | WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 2002, 28(8): 988-994. |
3 | CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. |
4 | FENG X J, JIANG L. Design and creation of superwetting/antiwetting surfaces[J]. Advanced Materials, 2006, 18(23): 3063-3078. |
5 | NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997,79(6): 667-677. |
6 | BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1):1-8. |
7 | FENG L, LI S, LI Y, et al. Super-hydrophobic surfaces: from natural to artificial[J]. Advanced Materials, 2002, 14(24):1857-1860. |
8 | YU Y, ZHAO Z H, ZHENG Q S. Mechanical and superhydrophobic stabilities of two-scale surfacial structure of lotus leaves[J]. Langmuir, 2007, 23(15): 8212-8216. |
9 | LUO C, ZUO X, WANG L, et al. Flexible carbon nanotube-polymer composite films with high conductivity and superhydrophobicity made by solution process[J]. Nano Letters, 2008, 8(12):4454-4458. |
10 | HU Z H, SUN M, LYU M, et al. Deciphering buried air phases on natural and bioinspired superhydrophobic surfaces using synchrotron radiation-based X-ray phase-contrast imaging[J]. NPG Asia Materials, 2016, 8(9):e306. |
11 | MCKEEN L W. Handbook of polymer applications in medicine and medical devices: 3. Plastics used in medical devices[M]. Elsevier Inc. Chapters, 2013. |
12 | YUAN Z Q, CHEN H, ZHANG J D. Facile method to prepare lotus-leaf-like super-hydrophobic poly(vinyl chloride) film[J]. Applied Surface Science, 2008, 254(6):1593-1598. |
13 | CHEN H, YUAN Z Q, ZHANG J D, et al. Preparation, characterization and wettability of porous superhydrophobic poly(vinyl chloride) surface[J]. Journal of Porous Materials, 2009, 16(4): 447-451. |
14 | YANG N, LI J C, BAI N N, et al. One step phase separation process to fabricate superhydrophobic PVC films and its corrosion prevention for AZ91D magnesium alloy[J]. Materials Science and Engineering B, 2016, 209: 1-9. |
15 | KOPONEN H K, SAARIKOSKI I, KORHONEN T, et al. Modification of cycloolefin copolymer and poly(vinyl chloride)surfaces by superimposition of nano- and microstructures[J]. Applied Surface Science, 2007, 253(12):5208-5213. |
16 | GURAV A B, LATTHE S S, VHATKAR R S, et al. Superhydrophobic surface decorated with vertical ZnO nanorods modified by stearic acid[J]. Ceramics International, 2014, 40(5):7151-7160. |
17 | KOKARE A M, SUTAR R S, DESHMUKH S G, et al. ODS-modified TiO2 nanoparticles for the preparation of self-cleaning superhydrophobic coating[J]. AIP Conference Proceedings, 2018, 1953(1): 100068. |
18 | LATTHE S S, NAKATA K, HÖFER R, et al. CHAPTER 5. Lotus effect-based superhydrophobic surfaces: candle soot as a promising class of nanoparticles for self-cleaning and oil-water separation applications[M]//Green Chemistry Series. Cambridge: Royal Society of Chemistry, 2019: 92-119. |
19 | SUTAR R S, KALEL P J, LATTHE S S, et al. Superhydrophobic PVC/SiO2 coating for self-cleaning application[J]. Macromolecular Symposia, 2020, 393(1): 2000034. |
20 | YILGOR I, BILGIN S, ISIK M, et al. Facile preparation of superhydrophobic polymer surfaces[J]. Polymer, 2012, 53(6):1180-1188. |
21 | YOON H, KIM H, LATTHE S S, et al. A highly transparent self-cleaning superhydrophobic surface by organosilane-coated alumina particles deposited via electrospraying[J]. Journal of Materials Chemistry A, 2015, 3(21):11403-11410. |
22 | GUO Y G, WANG Q H. Facile approach in fabricating superhydrophobic coatings from silica-based nanocomposite[J]. Applied Surface Science, 2010, 257(1): 33-36. |
23 | PAWAR P G, XING R M, KAMBALE R C, et al. Polystyrene assisted superhydrophobic silica coatings with surface protection and self-cleaning approach[J]. Progress in Organic Coatings, 2017, 105:235-244. |
24 | ZHANG X, DING B, CHENG R, et al. Computational intelligence-assisted understanding of nature-inspired superhydrophobic behavior[J]. Advanced Science, 2018, 5(1): 1700520. |
25 | CHEN H Z, ZHANG X, ZHANG P Y, et al. Facile approach in fabricating superhydrophobic SiO2/polymer nanocomposite coating[J]. Applied Surface Science, 2012, 261: 628-632. |
26 | LATTHE S S, SUTAR R S, KODAG V S, et al. Self-cleaning superhydrophobic coatings: potential industrial applications[J]. Progress in Organic Coatings, 2019, 128: 52-58. |
27 | QU M N, LIU S S, HE J M, et al. Fabrication of recyclable superhydrophobic materials with self-cleaning and mechanically durable properties on various substrates by quartz sand and polyvinylchloride[J]. RSC Advances, 2016, 6(82): 79238-79244. |
28 | QU M N, LIU S S, HE J M, et al. Fabrication of recyclable and durable superhydrophobic materials with wear/corrosion-resistance properties from kaolin and polyvinylchloride[J]. Applied Surface Science, 2017, 410: 299-307. |
29 | SEYFI J, PANAHI-SARMAD M, ORAEIGHODOUSI A, et al. Antibacterial superhydrophobic polyvinyl chloride surfaces via the improved phase separation process using silver phosphate nanoparticles[J]. Colloids and Surfaces B Biointerfaces, 2019, 183: 110438. |
30 | IRIBARREN A, RIVERO P, BERLANGA C, et al. Multifunctional protective PVC-ZnO nanocomposite coatings deposited on aluminum alloys by electrospinning[J]. Coatings, 2019, 9(4): 216. |
31 | RIVERO P J, IRIBARREN A, LARUMBE S, et al. A comparative study of multifunctional coatings based on electrospun fibers with incorporated ZnO nanoparticles[J]. Coatings, 2019, 9(6): 367. |
32 | MOLLA-ABBASI P. Effect of nano-size nodular structure induced by CNT-promoted phase separation on the fabrication of superhydrophobic polyvinyl chloride films[J]. Polymers for Advanced Technologies, 2021, 32(1):391-401. |
33 | RIOBOO R, DEMNATI I, ALI M A, et al. Superhydrophobicity of composite surfaces created from polymer blends[J]. Journal of Colloid and Interface Science, 2020, 560: 596-605. |
34 | 张大帅.超疏水PVDF/PVC复合膜的制备及其在膜蒸馏海水淡化中的应用[D].海口: 海南师范大学, 2020. |
ZHANG Dashuai. Preparation of superhydrophobic PVDF/PVC composite membrane and application in membrane distillation for desalination [D]. Haikou: Hainan Normal University, 2020. | |
35 | ERBIL H Y, DEMIREL A L, AVCı Y, et al. Transformation of a simple plastic into a superhydrophobic surface[J]. Science, 2003, 299(5611): 1377-1380. |
36 | 周存, 秦兆立, 王闻宇, 等. 动力/储能锂离子电池隔膜制备先进技术及研究进展[J].材料导报, 2018, 32(23): 4051-4060. |
ZHOU Cun, QIN Zhaoli, WANG Wenyu, et al. The state-of-the-art preparation technology of separator for power/energy storage lithium ion battery: a review[J]. Materials Review, 2018, 32(23): 4051-4060. | |
37 | 侯瑞, 李桂群, 张岩, 等.聚合物相分离技术在超疏水表面制备中的应用[J].化工进展, 2020, 39(2): 616-626. |
HOU Rui, LI Guiqun, ZHANG Yan, et al. Application of polymer phase separation technique in preparation of superhydrophobic surface[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 616-626. | |
38 | PATEL S U, CHASE G G. Separation of water droplets from water-in-diesel dispersion using superhydrophobic polypropylene fibrous membranes[J]. Separation and Purification Technology, 2014, 126: 62-68. |
39 | YUAN Z Q, CHEN H, TANG J X, et al. Facile method to fabricate stable superhydrophobic polystyrene surface by adding ethanol[J]. Surface and Coatings Technology, 2007, 201(16/17): 7138-7142. |
40 | KANG Y K, WANG J Y, YANG G B, et al. Preparation of porous super-hydrophobic and super-oleophilic polyvinyl chloride surface with corrosion resistance property[J]. Applied Surface Science, 2011, 258(3): 1008-1013. |
41 | MAGHSOUDI K, VAZIRINASAB E, MOMEN G, et al. Advances in the fabrication of superhydrophobic polymeric surfaces by polymer molding processes[J]. Industrial & Engineering Chemistry Research, 2020, 59(20): 9343-9363. |
42 | 邓建辉, 杨晓青, 方称辉, 等. 静电纺丝/静电喷雾技术在电池领域的应用进展[J].化工进展,2021, 40(10): 5600-5614. |
DENG Jianhui, YANG Xiaoqing, FANG Chenhui, et al. Application of electrospinning and electrospray technology in battery/cell field[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5600-5614. | |
43 | BAO Q L, ZHANG H, YANG J X, et al. Graphene-polymer nanofiber membrane for ultrafast photonics[J]. Advanced Functional Materials, 2010, 20(5): 782-791. |
44 | ZHAO R, LU X F, WANG C. Electrospinning based all-nano composite materials: recent achievements and perspectives[J]. Composites Communications, 2018, 10: 140-150. |
45 | RENEKER D H, YARIN A L, FONG H, et al. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. Journal of Applied Physics, 2000, 87(9): 4531-4547. |
46 | SHIN Y M, HOHMAN M M, BRENNER M P, et al. Electrospinning: a whipping fluid jet generates submicron polymer fibers[J]. Applied Physics Letters, 2001, 78(8): 1149-1151. |
47 | LEE J K Y, CHEN N, PENG S J, et al. Polymer-based composites by electrospinning: preparation & functionalization with nanocarbons[J]. Progress in Polymer Science, 2018, 86: 40-84. |
48 | 岳青, 王绍德, 徐飞, 等. 静电纺丝技术及其在各领域中的应用[J].材料导报, 2021, 35(S1): 594-599. |
YUE Qing, WANG Shaode, XU Fei, et al. Electrostatic spinning technology and its application in various fields[J]. Materials Reports, 2021, 35(S1): 594-599. | |
49 | MA M, GUPTA M, LI Z, et al. Decorated electrospun fibers exhibiting superhydrophobicity[J]. Advanced Materials, 2007, 19(2): 255-259. |
50 | ACATAY K, SIMSEK E, OW-YANG C, et al. Tunable, superhydrophobically stable polymeric surfaces by electrospinning[J]. Angewandte Chemie International Edition, 2004, 43(39): 5210-5213. |
51 | PARK S H, LEE S M, LIM H S, et al. Robust superhydrophobic mats based on electrospun crystalline nanofibers combined with a silane precursor[J]. ACS Applied Materials & Interfaces, 2010, 2(3): 658-662. |
52 | RIVERO P, GARCIA J, QUINTANA I, et al. Design of nanostructured functional coatings by using wet-chemistry methods[J]. Coatings, 2018,8(2): 76. |
53 | ASMATULU R, CEYLAN M, NURAJE N. Study of superhydrophobic electrospun nanocomposite fibers for energy systems[J]. Langmuir, 2011, 27(2): 504-507. |
54 | LEE K H, KIM H Y, LA Y M, et al. Influence of a mixing solvent with tetrahydrofuran and N,N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats[J]. Journal of Polymer Science B: Polymer Physics, 2002, 40(19): 2259-2268. |
55 | KIM D K, LEE S B, DOH K S. Surface properties of fluorosilicone copolymers and their surface modification effects on PVC film[J]. Journal of Colloid and Interface Science, 1998, 205(2): 417-422. |
56 | JIANG Z Q, WANG X Q, JIA H Y, et al. Superhydrophobic polytetrafluoroethylene/heat-shrinkable polyvinyl chloride composite film with super anti-icing property[J]. Polymers, 2019, 11(5): 805. |
57 | LI C Q, ZHU M Y, OU J F, et al. Dynamic corrosion behavior of superhydrophobic surfaces[J]. RSC Advances, 2018, 8(51): 29201-29209. |
58 | MOHAMED A M A, ABDULLAH A M, YOUNAN N A. Corrosion behavior of superhydrophobic surfaces: a review[J]. Arabian Journal of Chemistry, 2015, 8(6): 749-765. |
59 | JEEN ROBERT R B, HIKKU G S, JEYASUBRAMANIAN K, et al. ZnO nanoparticles impregnated polymer composite as superhydrophobic anti-corrosive coating for aluminium-6061 alloy[J]. Materials Research Express, 2019, 6(7): 75705. |
60 | GABRIEL M, STRAND D, VAHL C F. Cell adhesive and antifouling polyvinyl chloride surfaces via wet chemical modification[J]. Artificial Organs, 2012, 36(9): 839-844. |
61 | LAKSHMI S, JAYAKRISHNAN A. Migration resistant, blood-compatible plasticized polyvinyl chloride for medical and related applications[J]. Artificial Organs, 1998, 22(3): 222-229. |
62 | MILIANI K, MIGUERES B, VERJAT-TRANNOY D, et al. National point prevalence survey of healthcare-associated infections and antimicrobial use in French home care settings, May to June 2012[J]. Euro Surveillance, 2015, 20(27): 12-22. |
63 | NAEEMABADI N, SEYFI J, HEJAZI E, et al. Investigation on surface properties of superhydrophobic nanocomposites based on polyvinyl chloride and correlation with cell adhesion behavior[J]. Polymers for Advanced Technologies, 2019, 30(4): 1027-1035. |
64 | LOO C Y, YOUNG P M, LEE W H, et al. Superhydrophobic, nanotextured polyvinyl chloride films for delaying Pseudomonas aeruginosa attachment to intubation tubes and medical plastics[J]. Acta Biomaterialia, 2012, 8(5): 1881-1890. |
65 | HELLIO C, YEBRA D. Advances in marine antifouling coatings and technologies[M]. Oxford: Woodhead Publishing Series, Limited, 2009. |
66 | IYAPPARAJ P, REVATHI P, RAMASUBBURAYAN R, et al. Antifouling and toxic properties of the bioactive metabolites from the seagrasses Syringodium isoetifolium and Cymodocea serrulata [J]. Ecotoxicology and Environmental Safety, 2014, 103: 54-60. |
67 | GUDIPATI C S, FINLAY J A, CALLOW J A, et al. The antifouling and fouling-release perfomance of hyperbranched fluoropolymer (HBFP)-poly(ethylene glycol) (PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga ulva[J]. Langmuir, 2005, 21(7): 3044-3053. |
68 | MARMUR A. Super-hydrophobicity fundamentals: implications to biofouling prevention[J]. Biofouling, 2006, 22(1/2): 107-115. |
69 | 王强, 李昌诚, 闫雪峰 等. 低表面能海洋防污涂层技术及其评价方法[J].材料导报, 2008, 22(10): 84-87, 94. |
WANG Qiang, LI Changcheng, YAN Xuefeng, et al. Marine antifouling coating technology with low surface energy and its evaluation methods[J]. Materials Review, 2008, 22(10): 84-87, 94. | |
70 | BROWN R, RUSSELL S, MAY S, et al. Reproducible superhydrophobic PVC coatings; investigating the use of plasticizers for early stage biofouling control[J]. Advanced Engineering Materials, 2017, 19(7): 1700053. |
71 | WANG Y B, XU Y M, HUANG Q. Progress on ultrasonic guided waves de-icing techniques in improving aviation energy efficiency[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 638-645. |
72 | ZUO Z P, LIAO R J, GUO C, et al. Fabrication and anti-icing property of coral-like superhydrophobic aluminum surface[J]. Applied Surface Science, 2015, 331: 132-139. |
73 | 余春浩, 宫敬, 郝鹏飞, 等. 超疏水表面防结冰结霜性能的研究进展[J].材料导报, 2014, 28(13): 65-68. |
YU Chunhao, GONG Jing, HAO Pengfei, et al. Progress of anti-icing and anti-frosting properties of super hydrophobic surface[J]. Mterials Review, 2014, 28(13): 65-68. | |
74 | LONG Y F, YIN X X, MU P, et al. Slippery liquid-infused porous surface (SLIPS) with superior liquid repellency, anti-corrosion, anti-icing and intensified durability for protecting substrates[J]. Chemical Engineering Journal, 2020, 401: 126137. |
[1] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[2] | 谈继淮, 余敏, 张彤彤, 黄能坤, 王梓雯, 朱新宝. 新型栲胶聚丙氧基醚酯的合成及增塑PVC性能[J]. 化工进展, 2023, 42(9): 4847-4855. |
[3] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[4] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[5] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[6] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[7] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[8] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[9] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[10] | 孙旭东, 赵玉莹, 李诗睿, 王琦, 李晓健, 张博. 我国地方性氢能发展政策的文本量化分析[J]. 化工进展, 2023, 42(7): 3478-3488. |
[11] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[12] | 刘战剑, 付雨欣, 任丽娜, 张曦光, 袁中涛, 杨楠, 汪怀远. 超疏水涂层在防腐阻垢领域研究进展[J]. 化工进展, 2023, 42(6): 2999-3011. |
[13] | 徐国彬, 刘洪豪, 李洁, 郭家奇, 王琪. ZnO量子点水性喷墨荧光墨水制备及性能[J]. 化工进展, 2023, 42(6): 3114-3122. |
[14] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
[15] | 金涌, 程易, 白丁荣, 张晨曦, 魏飞. 中国流态化技术研发史略[J]. 化工进展, 2023, 42(6): 2761-2780. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |