[1] 胡小梅, 高运飞, 张必弦. 离子液体在Knoevenagel缩合反应工艺中的研究与应用进展[J]. 精细化工, 2011, 28(10): 937-940. [2] Hu X M, Xiao Y B, Niu K, et al. Functional ionic liquids for hydrolysis of lignocelluloses[J]. Carbohydrate Polymer, 2013, 97(1): 172-176. [3] Hu X M, Zhang B X, Yuan Z, et al. Functional ionic liquids as effective catalysts for the preparation of genistein and daidzein[J]. Journal of JFAE, 2013, 11(2): 193-196. [4] 胡小梅. 六种离子液体的合成研究[J]. 东北农业大学学报, 2011, 42(8): 142-145. [5] 陈志刚, 宗敏华, 顾振新. 离子液体毒性、生物降解性及绿色离子液体的设计与合成[J]. 有机化学, 2009, 29(5): 672-680. [6] 赵永升, 赵继红, 张香平, 等. 离子液体毒性及降解性研究进展[J]. 化工新型材料, 2012, 40(10): 9-11. [7] 杨艺晓, 赵继红, 张宏忠. 离子液体对高等植物的毒性及其生物降解性研究综述[J]. 郑州轻工业学院学报: 自然科学版, 2013, 28(6): 35-38. [8] Stepnowski P, Zaleska A. Comparison of different advanced oxidation processes for the degradation of room temperature ionic liquids[J]. J. Photoch. Photobio. A, 2005, 170: 45-50. [9] Awad W H, Gilman J W, Nyden M, et al. Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites[J]. Thermochim. Acta, 2004, 409: 3-11. [10] Morawski A W, Janus M, Goc-Maciejewska I, et al. Decomposition of ionic liquids by photocatalysis[J]. Pol. J. Chem., 2005, 79: 1929-1935. [11] Li X, Zhao J, Li Q, et al. Ultrasonic chemical oxidative degradations of 1,3-dialkyl-imidazolium ionic liquids and their mechanistic elucidations[J]. Dalton Trans., 2007, 19: 1875-1880. [12] Czerwicka M, Stolte S, Müller A, et al. Identification of ionic liquid breakdown products in an advanced oxidation system[J]. Journal of Hazardous Materials, 2009, 171: 478-483. [13] Siedlecka E M, Mrozik W, Kaczyn-ski Z, et al. Degradation of 1-butyl-3-methyl imidazolium chloride ionic liquid in a Fenton-like system[J]. J. Hazard. Mater, 2008, 154: 893-900. [14] Siedlecka E M, Go1ebiowski M, Kumirska, et al. Identification of 1-butyl-3-methyl imidazolium chloride degradation products formed in Fe(Ⅲ)/H2O2 oxidation system[J]. Chem. Anal. (Warsaw), 2008, 53: 943-951. [15] Siedlecka E M, Stepnowski P. The effect of alkyl chain length on the degradation of alkylimidazolium-and pyridinium-type ionic liquids in a Fenton-like system[J]. Environ. Sci. Pollut. Res., 2009, 16: 453-458. [16] Munoz M, Dominguez C M, de Pedr Z M, et al. Ionic liquids breakdown by Fenton oxidation[J]. Catalysis Today, 2015, 240: 16-21. [17] Domínguez C M, Munoz M, Quintanilla A, et al. Degradation of imidazolium-based ionic liquids in aqueous solution by Fenton oxidation[J]. Journal of Chemical Technology and Biotechnology, 2014, 89(8): 1197-1202. [18] Zhou H, Shen Y, Lv P, et al. Degradation pathway and kinetics of 1-alkyl-3-methylimidazolium bromides oxidation in an ultrasonic nanoscale zero-valent iron/hydrogen peroxide system[J]. Journal of Hazardous Materials, 2015, 284 : 241-252. [19] Siedlecka E M, Stolte S, Gołe M, et al. Advanced oxidation process for the removal of ionic liquids from water: The influence of functionalized side chains on the electrochemical degradability of imidazolium cations[J]. Separation and Purification Technology, 2012, 101: 26-33. [20] Zhou H, Shen Y, Lv P, et al. Degradation of 1-butyl-3-methylimidazolium chloride ionic liquid by ultrasound and zero-valent iron/activated carbon[J]. Separation and Purification Technology, 2013, 104: 208-213. [21] Zhou H, Lv P, Shen Y, et al. Identification of degradation products of ionic liquids in an ultrasound assisted zero-valent iron activated carbon microelectrolysis system and their degradation mechanism[J]. Water Research, 2013, 47: 3514 -3522. [22] Gao J, Chen L, He Y Y, et al. Degradation of imidazolium based ionic liquids in aqueous solution using plasma electrolysis[J]. Journal of Hazardous Materials, 2014, 265: 261-270. [23] Gathergood N, Scammells P J. Design and preparation of room-temperature ionic liquids containing biodegradable side chains[J]. Aust. J. Chem., 2002, 55: 557-560. [24] Garcia M T, Gathergood N, Scammells P J. Biodegradable ionic liquids. Part Ⅱ: Effect of the anion and toxicology[J]. Green Chemistry, 2005, 7: 9-14. [25] Wells A S, Coombe V T. On the freshwater ecotoxicity and biodegradation properties of some common ionic liquids[J]. Org. Pro. Res. Dev., 2006, 10: 794-798. [26] Boethling R S. Designing safer chemicals[J]. ACS Symp. Ser., 1996, 640: 156-171. [27] Gathergood N, Garcia M T, Scammells P J. Biodegradable ionic liquids: Part Ⅰ. Concept, preliminary targets and evaluation[J]. Green Chemistry, 2004, 6: 166-175. [28] Gathergood N, Scammells P J, Garcia M T. Biodegradable ionic liquids. Part Ⅲ: The first readily biodegradable ionic liquids[J]. Green Chemistry, 2006, 8: 156-160. [29] Harjani J R, Singer R D, Garcia M T, et al. The design and synthesis of biodegradable pyridinium ionic liquids[J]. Green Chemistry, 2008, 10: 436-438. [30] Morrissey S, Pegot B, Coleman D, et al. Biodegradable, non-bactericidal oxygen-functionalised imidazolium esters: A step towards “greener” ionic liquids[J]. Green Chemistry, 2009, 11(4): 475-483. [31] Docherty K M, Dixon J K, Kulpa C F. Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community[J]. Biodegradation, 2007, 18: 481-493. [32] Stolte S, Abdulkarim S, Arning J, et al. Primary biodegradation of ionic liquid cations, identification of degradation products of 1-methyl-3-octylimidazoliumchloride and electrochemical wastewater treatment of poorly biodegradable compounds[J]. Green Chemistry, 2008, 10: 214-224. [33] Docherty K M, Joyce M V, Kulacki K J, et al. Microbial biodegradation and metabolite toxicity of three pyridinium-based cation ionic liquids[J]. Green Chemistry, 2010, 12: 701-712. [34] Kumar S, Ruth W, Sprenger B, et al. On the biodegradation of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate[J]. Chim. Oggi., 2006, 24: 24-26. [35] Ewa L, Bizukojc I, Gendaszewska D. Removal of imidazolium ionic liquids by microbial associations: Study of the biodegradability and kinetics[J]. Journal of Bioscience and Bioengineering, 2013, 115(1): 71-75. [36] Deng Y, Beadham I, Ghavre M. When can ionic liquids be considered readily biodegradable? Biodegradation pathways of pyridinium, pyrrolidinium and ammonium-based ionic liquids[J]. Green Chemistry, 2015, 17: 1479-1491. [37] Harjani J R, Singer R D, Garcia MT, et al. The design and synthesis of biodegradable pyridinium ionic liquids[J]. Green Chemistry, 2008, 10: 436-438. [38] Pham T P T, Cho C W, Jeon C O, et al. Identification of metabolites involved in the biodegradation of the ionic liquid 1-butyl-3-methylpyridinium bromide by activated sludge microorganisms[J]. Environ. Sci. Technol., 2009, 43: 516-521. [39] Zhang C, Wang H, Malhotra S V, et al. Biodegradation of pyridinium-based ionic liquids by an axenic culture of soil Corynebacteria[J]. Green Chemistry, 2010, 12: 851-858. [40] Zhang C, Malhotra S V, Francis A J. Toxicity of imidazolium-and pyridinium-based ionic liquids and the co-metabolic degradation of N-ethylpyridinium tetrafluoroborate[J]. Chemosphere, 2011, 82, 1690-1695. [41] 吴梦瑶, 胡翔. 一株降解1-己基-3-甲基咪唑六氟磷酸盐微生物的筛选与鉴定[J]. 高校化学工程学报, 2014, 28(2): 431-437. |