化工进展 ›› 2025, Vol. 44 ›› Issue (S1): 19-28.DOI: 10.16085/j.issn.1000-6613.2024-2129
武锦怡1(
), 赵睿恺1,2(
), 邓帅1,2, 张家麒1, 高春霄1, 刘葳桦1, 赵力1
收稿日期:2024-12-31
修回日期:2025-03-17
出版日期:2025-10-25
发布日期:2025-11-24
通讯作者:
赵睿恺
作者简介:武锦怡(2003—),女,硕士研究生,研究方向为SF6吸附分离回收。E-mail:wjinyi124@163.com。
基金资助:
WU Jinyi1(
), ZHAO Ruikai1,2(
), DENG Shuai1,2, ZHANG Jiaqi1, GAO Chunxiao1, LIU Weihua1, ZHAO Li1
Received:2024-12-31
Revised:2025-03-17
Online:2025-10-25
Published:2025-11-24
Contact:
ZHAO Ruikai
摘要:
SF6是一种重点控制的强温室气体。为了减少其排放,本文提出使用变温吸附(TSA)循环从混合绝缘气体中(SF6的摩尔分数为15%,N2的摩尔分数为85%)分离回收SF6。采用数值模拟方法建立了TSA循环的物理模型和数学模型,与文献实验数据对比并证明了模型的可靠性。采用3种性能评价指标(纯度、回收率、比能耗),研究不同的吸附剂材料、吸附床几何尺寸和操作条件对TSA循环性能的影响。结果表明,4种材料的循环性能最好的是Mg-MOF-74,然后是AC、UIO-66、13X。吸附剂采用Mg-MOF-74,吸附床当量长径比在6.9~23.6内时,循环性能随长径比增大而提升,纯度和回收率最高分别可达到69.31%和62.90%,比能耗最低为1.89MJ/kg。降低吸附温度和升高解吸温度有利于增大材料的SF6循环工作容量,对混合绝缘气体分离回收SF6有利。
中图分类号:
武锦怡, 赵睿恺, 邓帅, 张家麒, 高春霄, 刘葳桦, 赵力. 混合绝缘气体变温吸附分离回收SF6的数值模拟[J]. 化工进展, 2025, 44(S1): 19-28.
WU Jinyi, ZHAO Ruikai, DENG Shuai, ZHANG Jiaqi, GAO Chunxiao, LIU Weihua, ZHAO Li. Numerical simulation of temperature swing adsorption for SF6 recovery from mixed insulating gas[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 19-28.
| SF6物性参数 | 数值 |
|---|---|
| 密度ρg/kg∙m-3 | 6.07 |
| 摩尔质量M/g∙mol-1 | 146.07 |
| 热导率kg/W∙m-1∙K-1 | 0.014 |
| 比热容cp,g/J∙kg-1∙K-1 | 650 |
| 动力黏度μ/kg∙m-1∙s-1 | 1.58×10-5 |
表1 SF6的物性参数
| SF6物性参数 | 数值 |
|---|---|
| 密度ρg/kg∙m-3 | 6.07 |
| 摩尔质量M/g∙mol-1 | 146.07 |
| 热导率kg/W∙m-1∙K-1 | 0.014 |
| 比热容cp,g/J∙kg-1∙K-1 | 650 |
| 动力黏度μ/kg∙m-1∙s-1 | 1.58×10-5 |
| 参数 | 数值 |
|---|---|
| 壁面厚度δ/m | 0.001 |
| 密度ρw/kg∙m-3 | 8030 |
| 比热容cp,w/J∙kg-1∙K-1 | 502.48 |
表2 圆管材料物理性能
| 参数 | 数值 |
|---|---|
| 壁面厚度δ/m | 0.001 |
| 密度ρw/kg∙m-3 | 8030 |
| 比热容cp,w/J∙kg-1∙K-1 | 502.48 |
| 吸附剂性能 | UIO-66[ | 13X[ | AC[ | Mg-MOF-74[ |
|---|---|---|---|---|
| 密度ρs/kg∙m-3 | 380 | 1099.5 | 592 | 911 |
| 比热容cp,s/J∙kg-1∙K-1 | 750 | 920 | 887 | 900 |
| 孔隙率ε | 0.246 | 0.565 | 0.36 | 0.7417 |
| 传热系数λs/W∙m-1∙K-1 | 0.32 | 0.15 | 0.3 | 0.3 |
| 颗粒直径d/mm | 0.36 | 1 | 2 | 0.2 |
| 黏性阻力系数α-1/m-2 | 4.420×1010 | 1.574×108 | 3.292×108 | 6.132×108 |
| 惯性阻力系数C2/m-1 | 4.924×105 | 8.441×103 | 2.401×104 | 1.108×104 |
表3 不同吸附剂材料的物性参数
| 吸附剂性能 | UIO-66[ | 13X[ | AC[ | Mg-MOF-74[ |
|---|---|---|---|---|
| 密度ρs/kg∙m-3 | 380 | 1099.5 | 592 | 911 |
| 比热容cp,s/J∙kg-1∙K-1 | 750 | 920 | 887 | 900 |
| 孔隙率ε | 0.246 | 0.565 | 0.36 | 0.7417 |
| 传热系数λs/W∙m-1∙K-1 | 0.32 | 0.15 | 0.3 | 0.3 |
| 颗粒直径d/mm | 0.36 | 1 | 2 | 0.2 |
| 黏性阻力系数α-1/m-2 | 4.420×1010 | 1.574×108 | 3.292×108 | 6.132×108 |
| 惯性阻力系数C2/m-1 | 4.924×105 | 8.441×103 | 2.401×104 | 1.108×104 |
| 吸附剂材料 | 气体种类 | qm/mol·kg-1 | k0/Pa-1 | n | ΔH/J·mol-1 |
|---|---|---|---|---|---|
| UIO-66 | SF6 | 1.81 | 2.92×10-10 | 0.581 | -38906 |
| N2 | 12.03 | 4.74×10-10 | 0.57 | -14582 | |
| 13X | SF6 | 1.546 | 9.402×10-10 | 1.053 | -26173 |
| N2 | 1.014 | 2.26×10-8 | 0.4376 | -13360 | |
| AC | SF6 | 4.765 | 6.995×10-12 | 0.440 | -42193 |
| N2 | 9.74 | 6.91×10-10 | 0.518 | -16310 | |
| Mg-MOF-74 | SF6 | 6.565 | 3.206×10-11 | 1.849 | -34444 |
| N2 | 6.7072 | 9.36×10-10 | 1 | -18000 |
表4 不同吸附剂材料的Toth模型参数
| 吸附剂材料 | 气体种类 | qm/mol·kg-1 | k0/Pa-1 | n | ΔH/J·mol-1 |
|---|---|---|---|---|---|
| UIO-66 | SF6 | 1.81 | 2.92×10-10 | 0.581 | -38906 |
| N2 | 12.03 | 4.74×10-10 | 0.57 | -14582 | |
| 13X | SF6 | 1.546 | 9.402×10-10 | 1.053 | -26173 |
| N2 | 1.014 | 2.26×10-8 | 0.4376 | -13360 | |
| AC | SF6 | 4.765 | 6.995×10-12 | 0.440 | -42193 |
| N2 | 9.74 | 6.91×10-10 | 0.518 | -16310 | |
| Mg-MOF-74 | SF6 | 6.565 | 3.206×10-11 | 1.849 | -34444 |
| N2 | 6.7072 | 9.36×10-10 | 1 | -18000 |
| 参数 | UIO-66 | 13X | AC | Mg-MOF-74 |
|---|---|---|---|---|
| SF6吸附时间常数/s-1 | 0.1 | 0.1 | 0.1 | 0.1 |
| N2吸附时间常数/s-1 | 0.15[ | 0.6[ | 0.2[ | 0.313[ |
表5 SF6和N2在不同材料床层的吸附时间常数
| 参数 | UIO-66 | 13X | AC | Mg-MOF-74 |
|---|---|---|---|---|
| SF6吸附时间常数/s-1 | 0.1 | 0.1 | 0.1 | 0.1 |
| N2吸附时间常数/s-1 | 0.15[ | 0.6[ | 0.2[ | 0.313[ |
| [27] | DING Zhaoyang, HAN Zhiyang, SHI Wenrong, et al. Analysis of dynamic effective mass transfer coefficients of rapid pressure swing adsorption process for oxygen production[J]. CIESC Journal, 2018, 69(2): 759-768. |
| [28] | 彭荣. 多孔材料吸附储氢的CFD模拟与优化[D]. 武汉: 武汉理工大学, 2012. |
| PENG Rong. CFD modeling and optimization of adsorptive hydrogen storage in porous materials[D]. Wuhan: Wuhan University of Technology, 2012. | |
| [29] | Rached BEN-MANSOUR, QASEM Naef A A, ANTAR Mohammed A. Carbon dioxide adsorption separation from dry and humid CO2/N2 mixture[J]. Computers & Chemical Engineering, 2018, 117: 221-235. |
| [1] | 孙强, 杨典, 王芳, 等. 基于ASPEN PLUS的六氟化硫提纯工艺研究[J]. 云南化工, 2020, 47(9): 41-45. |
| SUN Qiang, YANG Dian, WANG Fang, et al. Research on distillation of pure sulfur hexafluoride based on ASPEN PLUS[J]. Yunnan Chemical Technology, 2020, 47(9): 41-45. | |
| [2] | REN Jiahao, CHANG Miao, ZENG Wenjiang, et al. Computer-aided discovery of MOFs with calixarene-analogous microenvironment for exceptional SF6 capture[J]. Chemistry of Materials, 2021, 33(13): 5108-5114. |
| [3] | FANG Xuekun, HU Xia, Greet JANSSENS-MAENHOUT, et al. Sulfur hexafluoride (SF6) emission estimates for China: An Inventory for 1990—2010 and a projection to 2020[J]. Environmental Science & Technology, 2013, 47(8): 3848-3855. |
| [4] | 中国气象局气候变化中心. 中国温室气体公报[R]. 北京: 中国气象局, 2023. |
| China Meteorological Administration Climate Center. China greenhouse gas bulletin[R]. Beijing: China Meteorological Administration, 2023. | |
| [5] | 刘红志, 彭柯. 六氟化硫回收回充净化处理系统的应用研究[J]. 四川电力技术, 2011, 34(1): 52-55. |
| LIU Hongzhi, PENG Ke. Research on the application of sulfur hexafluoride recovery and purification treatment system[J]. Sichuan Electric Power Technology. 2011, 34(1): 52-55. | |
| [6] | ZHENG Xianqiang, SHEN Yanlong, WANG Shitao, et al. Selective adsorption of SF6 in covalent- and metal-organic frameworks[J]. Chinese Journal of Chemical Engineering, 2021, 39: 88-95. |
| [7] | MOSLEH Soleiman, KHAKSAR Hadis. Cu-BDC MOF/CNFs hybrids for rapid CO2 capture in a circulating fluidized bed via temperature swing adsorption process[J]. Chemical Engineering Science, 2024, 287:119773. |
| [8] | 谢任禹, 雍觐源, 江龙, 等. 变湿吸附三维循环构建及能效分析[J]. 工程热物理学报, 2024, 45(9): 2593-2598. |
| XIE Renyu, YONG Jinyuan, JIANG Long, et al. Construction of three-dimensional moisture swing adsorption cycle and energy efficiency analysis[J]. Journal of Engineering Thermophysics, 2024, 45(9): 2593-2598. | |
| [9] | ZHAO Qinghu, WU Fan, HE Yingdian, et al. Impact of operating parameters on CO2 capture using carbon monolith by electrical swing adsorption technology (ESA)[J]. Chemical Engineering Journal, 2017, 327: 441-453. |
| [10] | 闫江文. 用于SF6/N2吸附分离的微孔MOFs的合成及其光响应研究[D]. 保定: 河北大学, 2024. |
| YAN Jiangwen. Synthesis microporous MOFs for SF6/N2 adsorption separation and photoresponse[D]. Baoding: Hebei University, 2024. | |
| [11] | CHEN Sirui, SHEN Yuanhui, GUAN Zhongbo, et al. Adsorption properties of SF6 on zeolite NaY, 13X, activated carbon, and silica gel[J]. Journal of Chemical & Engineering Data, 2020, 65(8): 4044-4051. |
| [12] | 高春霄, 赵睿恺, 邓帅, 等. 混合绝缘气体变温吸附分离回收SF6优化研究[J]. 低碳化学与化工, 2025, 50: 95-100. |
| GAO Chunxiao, ZHAO Ruikai, DENG Shuai,et al. Optimization study of SF6 recovery from mixed insulating gases using temperatureswing adsorption[J]. Low-Carbon Chemistry and Chemical Engineering, 2025, 50: 95-100. | |
| [13] | LIU Lei, JIN Seongmin, Kwangjun KO, et al. Alkyl-functionalization of (3-aminopropyl) triethoxysilane-grafted zeolite beta for carbon dioxide capture in temperature swing adsorption[J]. Chemical Engineering Journal, 2020, 382: 122834. |
| [14] | HAN Bo, CHAKRABORTY Anutosh. Advanced cooling heat pump and desalination employing functional UiO-66 (Zr) metal-organic frameworks [J]. Energy Conversion and Management, 2020, 213: 112825. |
| [15] | 任可欣, 鲁军辉, 王随林, 等. 低湿CO2/H2O混合气体吸附特性实验[J]. 化工进展, 2022, 41(12): 6698-6710. |
| REN Kexin, LU Junhui, WANG Suilin, et al. Adsorption characteristics of CO2/H2O with low humidity[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6698-6710. | |
| [16] | Ammar ALI ABD, OTHMAN Mohd Roslee, SHAMSUDIN Ili Khairunnisa, et al. Biogas upgrading to natural gas pipeline quality using pressure swing adsorption for CO2 separation over UiO-66: Experimental and dynamic modelling assessment[J]. Chemical Engineering Journal, 2023, 453: 139774. |
| [17] | CHEN Lijin, DENG Shuai, ZHAO Ruikai, et al. Temperature swing adsorption for CO2 capture: Thermal design and management on adsorption bed with single-tube/three-tube internal heat exchanger[J]. Applied Thermal Engineering, 2021, 199: 117538. |
| [18] | 周圆圆, 杨华伟, 张东辉. 甲烷/氮气变压吸附分离的实验与模拟[J]. 天然气化工, 2011, 36(5): 21-27. |
| ZHOU Yuanyuan, YANG Huawei, ZHANG Donghui. Simulation and experiment for the pressure swing adsorption separation of methane and nitrogen[J]. Natural Gas Chemical Industry, 2011, 36(5): 21-27. | |
| [19] | LIAN Yahui, DENG Shuai, LI Shuangjun, et al. Numerical analysis on CO2 capture process of temperature swing adsorption (TSA): Optimization of reactor geometry[J]. International Journal of Greenhouse Gas Control, 2019, 85: 187-198. |
| [20] | QASEM Naef A A, Rached BEN-MANSOUR. Energy and productivity efficient vacuum pressure swing adsorption process to separate CO2 from CO2/N2 mixture using Mg-MOF-74: A CFD simulation[J]. Applied Energy, 2018, 209: 190-202. |
| [21] | Jaehoon CHA, Seongbin GA, LEE Seung-Jun, et al. Integrated material and process evaluation of metal-organic frameworks database for energy-efficient SF6/N2 separation[J]. Chemical Engineering Journal, 2021, 426: 131787. |
| [22] | CHO Wan-Seon, LEE Kwang-Hoon, CHANG Hyang-Ja, et al. Evaluation of pressure-temperature swing adsorption for sulfur hexafluoride (SF6) recovery from SF6 and N2 gas mixture[J]. Korean Journal of Chemical Engineering, 2011, 28(11): 2196-2201. |
| [23] | KIM Min-Bum, LEE Seung-Joon, LEE Chang Yeon, et al. High SF6 selectivities and capacities in isostructural metal-organic frameworks with proper pore sizes and highly dense unsaturated metal sites[J]. Microporous and Mesoporous Materials, 2014, 190: 356-361. |
| [24] | YANG Xiaoxian, Arash ARAMI-NIYA, Jiafei LYU, et al. Net, excess, and absolute adsorption of N2, CH4, and CO2 on metal-organic frameworks of ZIF-8, MIL-101(Cr), and UiO-66 at 282—361K and up to 12MPa[J]. Journal of Chemical & Engineering Data, 2020, 66(1): 404-414. |
| [25] | ZHAO Ruikai, LIU Longcheng, ZHAO Li, et al. A comprehensive performance evaluation of temperature swing adsorption for post-combustion carbon dioxide capture[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109285. |
| [26] | Rached BEN-MANSOUR, QASEM Naef A A. An efficient temperature swing adsorption (TSA) process for separating CO2 from CO2/N2 mixture using Mg-MOF-74[J]. Energy Conversion and Management, 2018, 156: 10-24. |
| [27] | 丁兆阳, 韩治洋, 石文荣, 等. 快速变压吸附制氧动态传质系数模拟分析[J]. 化工学报, 2018, 69(2): 759-768. |
| [1] | 尹晓云, 朱进, 刘春艳, 张锦涛, 徐源, 朱英如, 苏明, 孙月, 孙杰, 袁颖. 基于PB设计和响应面法的CPS硫黄回收装置能量优化[J]. 化工进展, 2025, 44(S1): 124-133. |
| [2] | 符红梅, 刘定华, 刘晓勤. MOF材料在芳烃同分异构体分离中的研究进展[J]. 化工进展, 2025, 44(9): 5006-5017. |
| [3] | 张文静, 黄致新, 李士腾, 邓帅, 李双俊. 生物质碳气凝胶CO2吸附剂研究进展[J]. 化工进展, 2025, 44(9): 5018-5032. |
| [4] | 洪凯, 樊欢, 田佳, 张荥斐. 硫化沉淀法处理铜砷多金属酸性废水研究进展[J]. 化工进展, 2025, 44(9): 5301-5314. |
| [5] | 杜璇, 王战宏, 郑彬, 许卫, 王硕, 石鹏, 高国. 钴铁酸浸液分离及电池级磷酸铁回收技术进展[J]. 化工进展, 2025, 44(9): 5327-5338. |
| [6] | 孙梦圆, 陆诗建, 刘玲, 薛艳阳, 张云蓉, 董琦, 康国俊. 金属有机框架及衍生物在碳捕集领域的研究进展[J]. 化工进展, 2025, 44(9): 5339-5350. |
| [7] | 王晓光, 董青, 郎文丽, 洪翔鑫, 黄振祥, 谭凤玉, 雷以柱, 余子夷. 超低浓度甲烷减排与资源化利用研究进展[J]. 化工进展, 2025, 44(9): 5363-5376. |
| [8] | 段先哲, 毕文婷, 李南, 豆佳乐, 邵冰清, 汪佳伟, 吴鹏, 黄欢, 唐振平. 数值模拟在高放废物处置中的应用:放射性核素迁移机制及其影响因素[J]. 化工进展, 2025, 44(9): 5391-5405. |
| [9] | 鲁玲, 俞磊, 顾霞, 赖敏明, 周凯, 王亚鹏, 李响. 制药废盐的高效热催化处理及资源化利用[J]. 化工进展, 2025, 44(9): 5432-5441. |
| [10] | 张光辉, 江金旭, 黄磊, 陈士祥, 马天添. 市政污泥富氧燃烧特性影响因素分析及预测[J]. 化工进展, 2025, 44(9): 5460-5470. |
| [11] | 周敬皓, 张朝阳, 胡昊星, 王思茗, 刘静远, 魏光华. 基于格子玻尔兹曼方法的PEMFC微孔层气体传质分析[J]. 化工进展, 2025, 44(9): 4898-4907. |
| [12] | 王吉龙, 何磊, 苏毅, 唐昭帆. 基于尾气焚烧炉膛天然气无焰燃烧(MILD)数值模拟[J]. 化工进展, 2025, 44(9): 4928-4936. |
| [13] | 翟宇航, 丛立新, 韩冰, 王启林, 邹慧传. 大尺度氢气云爆燃压力波形成机制及灾害效应判定[J]. 化工进展, 2025, 44(8): 4709-4719. |
| [14] | 汪国超, 丁晖殿, 师丽, 李强, 夏涛, 苑杨. 复合精馏序列的温度推断控制[J]. 化工进展, 2025, 44(8): 4720-4731. |
| [15] | 杨勇, 张钊, 王东亮, 周怀荣, 赵子豪, 李煜坤. 二甲苯异构体不同分离策略的技术经济评价[J]. 化工进展, 2025, 44(8): 4732-4740. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |