化工进展 ›› 2025, Vol. 44 ›› Issue (9): 4898-4907.DOI: 10.16085/j.issn.1000-6613.2024-1136

• 化工过程与装备 • 上一篇    

基于格子玻尔兹曼方法的PEMFC微孔层气体传质分析

周敬皓1,2(), 张朝阳1, 胡昊星1,2, 王思茗1, 刘静远1,2, 魏光华1()   

  1. 1.上海交通大学巴黎卓越工程师学院,上海 200240
    2.上海交通大学燃料电池研究所,上海 200240
  • 收稿日期:2024-07-17 修回日期:2024-12-28 出版日期:2025-09-25 发布日期:2025-09-30
  • 通讯作者: 魏光华
  • 作者简介:周敬皓(1999—),男,硕士研究生,研究方向为质子交换膜燃料电池膜电极的数值模拟。E-mail:zhoujinghao922@sjtu.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFB4003504)

Numerical analysis of gas transfer in microporous layer of PEMFC based on lattice Boltzmann method

ZHOU Jinghao1,2(), ZHANG Chaoyang1, HU Haoxing1,2, WANG Siming1, LIU Jingyuan1,2, WEI Guanghua1()   

  1. 1.SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
    2.Institute of Fuel Cells, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2024-07-17 Revised:2024-12-28 Online:2025-09-25 Published:2025-09-30
  • Contact: WEI Guanghua

摘要:

基于格子玻尔兹曼方法(LBM)建立微孔传质数值模型,采用不同结构参数对质子交换膜燃料电池(PEMFC)中的微孔层(MPL)物理模型进行重构,并对其气体传质性质进行模拟计算。结果表明:MPL的氧气有效扩散系数随孔隙率下降而降低,当孔隙率由80%下降至40%时,受克努森扩散影响带来的阻力由51%上升至83%;若假设MPL孔隙率一致,有效扩散系数随PTFE含量上升而提升,若假设碳格点总量一致,则受孔隙率下降影响,有效扩散系数随PTFE含量上升而下降;MPL的有效扩散系数随碳球半径提升而提升,随碳球种子占比提升而下降。基于以上研究,将具有不同孔隙率的MPL与阴极催化层(CL)组合后进行传质、反应耦合模拟计算。结果表明,当MPL的孔隙率下降时,对应CL中离聚物的氧气浓度下降1.7%,含水量上升2.7%,MPL气体传质阻力的增加具有阻碍反应气传质和增加微孔内相对湿度的作用。研究结果对PEMFC中MPL的设计与利用具有理论指导意义。

关键词: 质子交换膜燃料电池, 微孔层, 传质, 数值模拟, 格子玻尔兹曼方法

Abstract:

A numerical model for mass transfer in micropores was established based on the lattice Boltzmann method (LBM). The physical models of the microporous layer (MPL) in the proton exchange membrane fuel cell (PEMFC) were reconstructed using different structural parameters, and the gas transfer property was simulated. The results show that the effective oxygen diffusion coefficient in the MPL decreases as porosity decreases from 80% to 40%, with resistance due to Knudsen diffusion increasing from 51% to 83%. Assuming a constant MPL porosity, the effective diffusion coefficient increases with PTFE mass fraction; however, assuming a constant total number of carbon lattices, the effective diffusion coefficient decreases with increasing PTFE mass fraction due to the reduced porosity. The effective diffusion coefficient of the MPL increases with the radius of the carbon spheres and decreases with an increasing carbon seed fraction. Moreover, a mass transfer and reaction coupling simulation was conducted by combining MPLs of different porosities with the cathode catalyst layer (CL). The results indicate that as MPL porosity decreases, the oxygen concentration in the ionomer of the CL decreases by 1.7%, and the water content increases by 2.7%. Increased gas transfer resistance in the MPL has the effect of hindering reactant gas transfer and increasing relative humidity within the micropores. These findings provide theoretical guidance for the design and utilization of MPLs in PEMFCs.

Key words: proton exchange membrane fuel cells, microporous layer, mass transfer, numerical simulation, lattice Boltzmann method

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn