| [1] |
中国氢能联盟. 中国氢能源及燃料电池产业白皮书[R]. 北京: 人民日报出版社, 2020.China Hydrogen Alliance. White paper of hydration energy and fuel cell industry in China[R]. Beijing: People’s Daily Press, 2020.
|
| [2] |
中华人民共和国中央人民政府. 关于开展燃料电池汽车示范应用的通知[EB/OL]. (2020-09-16) [2024-01-05]. .
|
|
The State Council of the People’s Republic of China. Notice on demonstration application of fuel cell vehicles[EB/OL]. (2020-09-16) [2024-01-05]. .
|
| [3] |
章俊良, 程明, 罗夏爽, 等. 车用燃料电池电堆关键技术研究现状[J]. 汽车安全与节能学报, 2022, 13(1): 1-28.
|
|
ZHANG Junliang, CHENG Ming, LUO Xiashuang, et al. Current status of the research on key technologies of vehicle fuel cell stack[J]. Journal of Automotive Safety and Energy, 2022, 13(1): 1-28.
|
| [4] |
程晓静, 沈水云, 王超, 等. 质子交换膜燃料电池超低铂化过程中物质传输的分析与展望[J]. 科学通报, 2021, 66(33): 4240-4255.
|
|
CHENG Xiaojing, SHEN Shuiyun, WANG Chao, et al. Analysis and outlook of mass transport in ultralow Pt loading proton exchange membrane fuel cells[J]. Chinese Science Bulletin, 2021, 66(33): 4240-4255.
|
| [5] |
侯健, 杨铮, 贺婷, 等. 质子交换膜燃料电池热管理问题的研究进展[J]. 中南大学学报(自然科学版), 2021, 52(1): 19-30.
|
|
HOU Jian, YANG Zheng, HE Ting, et al. Research progress on thermal management of proton exchange membrane fuel cells[J]. Journal of Central South University (Science and Technology), 2021, 52(1): 19-30.
|
| [6] |
李子坤, 颜聿聪. 燃料电池气体扩散层中微孔层用炭材料研究进展[J]. 炭素技术, 2022, 41(6): 1-4, 61.
|
|
LI Zikun, YAN Yucong. Research progress on the carbon materials for micropore layers in gas diffusion layers for PEMFC[J]. Carbon Techniques, 2022, 41(6): 1-4, 61.
|
| [7] |
李超明, 康敬欣, 刘勇. 质子交换膜燃料电池微孔层研究进展[J]. 化工新型材料, 2020, 48(9): 256-259.
|
|
LI Chaoming, KANG Jingxin, LIU Yong. Research progress on MPL of proton exchange membrane fuel cell[J]. New Chemical Materials, 2020, 48(9): 256-259.
|
| [8] |
WATANABE M, TOMIKAWA M, MOTOO S. Preparation of a high performance gas diffusion electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 182(1): 193-196.
|
| [9] |
QI Zhigang, KAUFMAN Arthur. Improvement of water management by a microporous sublayer for PEM fuel cells[J]. Journal of Power Sources, 2002, 109(1): 38-46.
|
| [10] |
Jaebong SIM, KANG Minsoo, MIN Kyoungdoug. Effects of basic gas diffusion layer components on PEMFC performance with capillary pressure gradient[J]. International Journal of Hydrogen Energy, 2021, 46(54): 27731-27748.
|
| [11] |
CHAN Carl, ZAMEL Nada, LI Xianguo, et al. Experimental measurement of effective diffusion coefficient of gas diffusion layer/microporous layer in PEM fuel cells[J]. Electrochimica Acta, 2012, 65: 13-21.
|
| [12] |
ZHANG Xiaoxian, GAO Yuan, OSTADI Hossein, et al. Modelling water intrusion and oxygen diffusion in a reconstructed microporous layer of PEM fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39(30): 17222-17230.
|
| [13] |
MOLAEIMANESH Gholam Reza. LBM simulations of PEM fuel cells[M]//Lattice Boltzmann Modeling for Chemical Engineering. Amsterdam: Elsevier, 2020: 143-217.
|
| [14] |
CHEN Li, WU Gang, HOLBY Edward F, et al. Lattice Boltzmann pore-scale investigation of coupled physical-electrochemical processes in C/Pt and non-precious metal cathode catalyst layers in proton exchange membrane fuel cells[J]. Electrochimica Acta, 2015, 158: 175-186.
|
| [15] |
CHENG Xiaojing, ZHOU Jinghao, LUO Liuxuan, et al. Boosting bulk oxygen transport with accessible electrode nanostructure in low Pt loading PEMFCs[J]. Small, 2024, 20(26): 2308563.
|
| [16] |
HOU Yuze, DENG Hao, PAN Fengwen, et al. Pore-scale investigation of catalyst layer ingredient and structure effect in proton exchange membrane fuel cell[J]. Applied Energy, 2019, 253: 113561.
|
| [17] |
WANG Yulin, QIN Shiwei, LIAO Xiangling, et al. Lattice Boltzmann study of the effect of catalyst layer structure on oxygen reduction reaction within a PEMFC[J]. International Journal of Hydrogen Energy, 2024, 52: 1105-1114.
|
| [18] |
HANNACH Mohamed EL, SINGH Randhir, DJILALI Ned, et al. Micro-porous layer stochastic reconstruction and transport parameter determination[J]. Journal of Power Sources, 2015, 282: 58-64.
|
| [19] |
何璞, 母玉同, 陈黎, 等. 质子交换膜燃料电池多孔电极有效输运系数预测[J]. 工程热物理学报, 2019, 40(1): 125-129.
|
|
HE Pu, MU Yutong, CHEN Li, et al. Predictions of effective transport coefficients for porous electrode in proton exchange membrane fuel cell[J]. Journal of Engineering Thermophysics, 2019, 40(1): 125-129.
|
| [20] |
ZHANG Heng, SHAO Xuanyu, ZHAN Zhigang, et al. Pore-scale modeling of microporous layer for proton exchange membrane fuel cell: Effective transport properties[J]. Membranes, 2023, 13(2): 219.
|
| [21] |
NANJUNDAPPA Abhishek, ALAVIJEH Alireza Sadeghi, HANNACH Mohamed EL, et al. A customized framework for 3-D morphological characterization of microporous layers[J]. Electrochimica Acta, 2013, 110: 349-357.
|
| [22] |
LANGE Kyle J, SUI Pang-Chieh, DJILALI Ned. Pore scale simulation of transport and electrochemical reactions in reconstructed PEMFC catalyst layers[J]. Journal of the Electrochemical Society, 2010, 157(10): B1434.
|
| [23] |
ZAMEL Nada, Jürgen BECKER, WIEGMANN Andreas. Estimating the thermal conductivity and diffusion coefficient of the microporous layer of polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2012, 207: 70-80.
|
| [24] |
W-G POLLARD, R-D PRESENT. On gaseous self-diffusion in long capillary tubes[J]. Physical Review, 1948, 73(7): 762-774.
|
| [25] |
LANGE Kyle J, SUI Pang-Chieh, DJILALI Ned. Pore scale modeling of a proton exchange membrane fuel cell catalyst layer: Effects of water vapor and temperature[J]. Journal of Power Sources, 2011, 196(6): 3195-3203.
|
| [26] |
SPRINGER T E, ZAWODZINSKI T A, GOTTESFELD S. Polymer electrolyte fuel cell model[J]. Journal of the Electrochemical Society, 1991, 138(8): 2334-2342.
|
| [27] |
MOTUPALLY Sathya, BECKER Aaron J, WEIDNER John W. Diffusion of water in nafion 115 membranes[J]. Journal of the Electrochemical Society, 2000, 147(9): 3171.
|
| [28] |
WANG Guoqing, MUKHERJEE Partha P, WANG Chaoyang. Direct numerical simulation (DNS) modeling of PEFC electrodes Part Ⅱ. Random microstructure[J]. Electrochimica Acta, 2006, 51(15): 3151-3160.
|
| [29] |
LEE Kunchan, ISHIHARA Akimitsu, MITSUSHIMA Shigenori, et al. Effect of recast temperature on diffusion and dissolution of oxygen and morphological properties in recast nafion[J]. Journal of the Electrochemical Society, 2004, 151(4): A639.
|
| [30] |
BRUGGEMAN D A G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. Ⅰ. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen[J]. Annalen Der Physik, 1935, 416(8): 665-679.
|
| [31] |
TJADEN Bernhard, COOPER Samuel J, BRETT Daniel JL, et al. On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems[J]. Current Opinion in Chemical Engineering, 2016, 12: 44-51.
|
| [32] |
JORDAN L R, SHUKLA A K, BEHRSING T, et al. Diffusion layer parameters influencing optimal fuel cell performance[J]. Journal of Power Sources, 2000, 86(1/2): 250-254.
|
| [33] |
LAMANNA Jacob M, KANDLIKAR Satish G. Determination of effective water vapor diffusion coefficient in pemfc gas diffusion layers[J]. International Journal of Hydrogen Energy, 2011, 36(8): 5021-5029.
|