化工进展 ›› 2025, Vol. 44 ›› Issue (S1): 102-111.DOI: 10.16085/j.issn.1000-6613.2024-1434
• 能源加工与技术 • 上一篇
张继达1(
), 袁君2, 乔红斌1, 王金海2, 杨俊辉1, 蔡振义2(
), 马中成1
收稿日期:2024-09-02
修回日期:2024-11-28
出版日期:2025-10-25
发布日期:2025-11-24
通讯作者:
蔡振义
作者简介:张继达(1992—),男,硕士,工程师,研究方向为煤矿瓦斯梯级利用。E-mail:zhangjida119@163.com。
基金资助:
ZHANG Jida1(
), YUAN Jun2, QIAO Hongbin1, WANG Jinhai2, YANG Junhui1, CAI Zhenyi2(
), MA Zhongcheng1
Received:2024-09-02
Revised:2024-11-28
Online:2025-10-25
Published:2025-11-24
Contact:
CAI Zhenyi
摘要:
多源瓦斯安全混合蓄热氧化余热利用技术是一种新兴的能源回收与利用方法,通过多种瓦斯源的安全混合和蓄热氧化过程,实现余热的高效回收和利用。当前,该技术尚处于发展阶段,本文综述了其研究进展和应用现状。首先,介绍了煤矿瓦斯的来源、特性及其对安全管理的影响,分析了瓦斯的生物成因和热成因及其物理化学性质。随后,探讨了多源瓦斯安全混合蓄热氧化技术的理论基础,包括热力学和化学动力学原理。最后,说明了该技术的关键环节,包括蓄热材料选择、反应器设计和控制系统的优化。该技术未来的发展方向为进一步提升蓄热技术的稳定性,同时加强智能化管理与控制技术的应用,实现多学科交叉,从而能够提高瓦斯的利用率,为实现煤矿安全生产提供坚实保障并显著提高经济效益。
中图分类号:
张继达, 袁君, 乔红斌, 王金海, 杨俊辉, 蔡振义, 马中成. 多源瓦斯安全混合蓄热氧化余热利用技术[J]. 化工进展, 2025, 44(S1): 102-111.
ZHANG Jida, YUAN Jun, QIAO Hongbin, WANG Jinhai, YANG Junhui, CAI Zhenyi, MA Zhongcheng. Research on the utilization technology of multi-source gas safe-mixing thermal storage oxidation waste heat[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 102-111.
| [1] | ZHANG Xinghua, WANG Haifeng, ZHAO Dan, et al. New insights into the drill cutting characteristics and fault distribution in gas-containing coal seams[J]. Geofluids, 2022, 2022(1): 3201581. |
| [2] | 杨温飞. 浅析煤矿瓦斯治理中的钻探技术及防治[J]. 内蒙古煤炭经济, 2024(14): 145-147. |
| YANG Wenfei. Analysis on drilling technology and prevention in coal mine gas control[J]. Inner Mongolia Coal Economy, 2024(14): 145-147. | |
| [3] | 李玥. 白龙山C2煤层煤孔隙结构对吸附解吸能力和钻屑解吸指标的影响[D]. 徐州: 中国矿业大学, 2022. |
| LI Yue. Influence of coal pore structure on adsorption and desorption capacity and cuttings desorption index of C2 coal seam in Bailongshan[D]. Xuzhou: China University of Mining and Technology, 2022. | |
| [4] | 张凯. 低浓度瓦斯发电气体预处理研究[J]. 能源与节能, 2024(6): 37-39, 43. |
| ZHANG Kai. Gas pretreatment for low-concentration gas power generation[J]. Energy and Energy Conservation, 2024(6): 37-39, 43. | |
| [5] | 刘军见. 煤矿瓦斯灾害防治技术[J]. 山西化工, 2018, 38(3): 200-201, 215. |
| LIU Junjian. Prevention and control technology of gas disaster in coal mine[J]. Shanxi Chemical Industry, 2018, 38(3): 200-201, 215. | |
| [6] | 邬喜仓, 孔德磊. 瓦斯抽采浓度影响因素分析[J]. 陕西煤炭, 2016, 35(6): 43-45. |
| WU Xicang, KONG Delei. Analysis on the influence factors of gas extraction concentration[J]. Shaanxi Coal, 2016, 35(6): 43-45. | |
| [7] | MORGENSTERN Olaf, ZENG Guang, DEAN Sam M, et al. Direct and ozone-mediated forcing of the southern annular mode by greenhouse gases[J]. Geophysical Research Letters, 2014, 41(24): 9050-9057. |
| [8] | WANG Jinsheng, RYAN David, ANTHONY Edward J. Reducing the greenhouse gas footprint of shale gas[J]. Energy Policy, 2011, 39(12): 8196-8199. |
| [9] | GIL Juliana. Agricultural development programmes reduce greenhouse gas emissions[J]. Nature Food, 2022, 3(12): 978. |
| [10] | 史平洋, 华丰. 煤矿瓦斯分类与综合利用的技术综述[J]. 集成电路应用, 2022, 39(7): 55-57. |
| SHI Pingyang, HUA Feng. Review on coal-mine gas and its utilization technology[J]. Application of IC, 2022, 39(7): 55-57. | |
| [11] | 马小童. 微波对煤中甲烷解吸—二氧化碳吸附双重激励作用及机理[D]. 焦作: 河南理工大学, 2019. |
| MA Xiaotong. Dual stimulation and mechanism of microwave on methane desorption and carbon dioxide adsorption in coal[D]. Jiaozuo: Henan Polytechnic University, 2019. | |
| [12] | 张永杰, 肖乐, 周方亮. 抽排乏风超低浓度瓦斯氧化热制取蒸汽技术[J]. 内燃机与动力装置, 2022, 39(1): 72-78. |
| ZHANG Yongjie, XIAO Le, ZHOU Fangliang. Technology of producing steam from ultra-low concentration gas oxidation heat of exhaust air[J]. Internal Combustion Engine & Powerplant, 2022, 39(1): 72-78. | |
| [13] | 张兴旺, 李雪琛, 席晓哲, 等. 利用煤矿瓦斯通过旋转式蓄热氧化装置在煤炭生产过程中应用[J]. 中国煤层气, 2024, 21(2): 44-47. |
| ZHANG Xingwang, LI Xuechen, XI Xiaozhe, et al. Application of coal mine methane in coal production process through a rotary regenerative oxidation device[J]. China Coalbed Methane, 2024, 21(2): 44-47. | |
| [14] | 洪威. 基于蓄热氧化及余热回收技术的挥发性有机废气治理方法[J]. 皮革制作与环保科技, 2023, 4(7): 109-111. |
| HONG Wei. Treatment method of volatile organic waste gas based on heat storage oxidation and waste heat recovery technology[J]. Leather Manufacture and Environmental Technology, 2023, 4(7): 109-111. | |
| [15] | 田涛, 韩雨, 张兴旺, 等. 旋转阀式蓄热氧化技术助力煤矿风排瓦斯综合利用[J]. 中国煤层气, 2023, 20(2): 39-42, 38. |
| TIAN Tao, HAN Yu, ZHANG Xingwang, et al. Comprehensive utilization of ventilation air methane in coal mines with rotary valve thermal oxidation technology[J]. China Coalbed Methane, 2023, 20(2): 39-42, 38. | |
| [16] | 张亚超. 不同动力煤对乏风瓦斯锅炉混烧影响规律研究[D]. 太原: 太原理工大学, 2022. |
| ZHANG Yachao. Study on the influence law of different power coals on mixed combustion of ventilation gas boiler[D]. Taiyuan: Taiyuan University of Technology, 2022. | |
| [17] | MAO Yijin, ZHANG Yuwen. Quantifying reaction rates in methane oxidation: Atomistic simulations at high temperature[J]. Journal of Physics D: Applied Physics, 2024, 57(35): 355501. |
| [18] | ZHENG Bin, LIU Yongqi, LIU Ruixiang, et al. Catalytic oxidation of coal mine ventilation air methane in a preheat catalytic reaction reactor[J]. International Journal of Hydrogen Energy, 2015, 40(8): 3381-3387. |
| [19] | 张云, 郑化安, 苏艳敏, 等. 蜂窝陶瓷蓄热材料的研究现状[J]. 广州化工, 2014, 42(21): 15-17. |
| ZHANG Yun, ZHENG Hua’an, SU Yanmin, et al. The research status of honeycomb ceramics thermal storage material[J]. Guangzhou Chemical Industry, 2014, 42(21): 15-17. | |
| [20] | 尚庆辉. 莫来石陶瓷蓄热材料的热震断裂特性研究[D]. 淄博: 山东理工大学, 2015. |
| SHANG Qinghui. Study on thermal shock fracture characteristics of heat storage materials in mullite ceramic[D]. Zibo: Shandong University of Technology, 2015. | |
| [21] | 邓浩鑫, 吕元, 萧琦, 等. 通风瓦斯蓄热式热氧化过程数值模拟[J].煤炭学报, 2012, 37(8):1332-1336. |
| DENG Haoxin, Yuan LYU, XIAO Qi, et al. Simulation on regenerative thermal oxidation of ventilation air methane[J]. Journal of China Coal Society, 2012, 37(8):1332-1336. | |
| [22] | WU Yifan, YANG Zhiwei, WU Niuniu, et al. Design of three-dimensional interconnected porous hydroxyapatite ceramic-based composite phase change materials for thermal energy storage[J]. International Journal of Energy Research, 2020, 44(14): 11930-11940. |
| [23] | 郭伯伟. WZ003088燃烧室热工过程的模化[J]. 工业加热, 2005, 34(6): 26. |
| GUO Bowei. Modeling of thermal processes in WZ003088 combustion chamber[J]. Industrial Heating, 2005, 34(6): 26 | |
| [24] | 华建社, 焦勇, 王建宏. Al-Si/Al2O3高温复合相变蓄热材料的研究[J]. 热加工工艺, 2012, 41(8): 72-74, 78. |
| HUA Jianshe, JIAO Yong, WANG Jianhong. Study on properties of Al-Si/Al2O3 composite phase change material for thermal energy storage[J]. Hot Working Technology, 2012, 41(8): 72-74, 78. | |
| [25] | 袁新辉, 崔文彬, 孙建航, 等. 相变蓄热材料成核触发方法和机理综述[J]. 化工新型材料, 2022, 50(11): 49-55. |
| YUAN Xinhui, CUI Wenbin, SUN Jianhang, et al. Review of nucleation triggering methods and mechanism of phase change heat storage materials[J]. New Chemical Materials, 2022, 50(11): 49-55. | |
| [26] | 秦倩. 相变蓄热装置强化换热技术研究进展[J]. 科技资讯, 2023, 21(10): 137-142. |
| QIN Qian. Research progress of heat transfer enhancement technology of phase-change heat storage devices[J]. Science & Technology Information, 2023, 21(10): 137-142. | |
| [27] | 王迪, 程勃. 相变蓄热技术在建筑节能中的应用分析[J]. 住宅与房地产, 2024(14): 123-125. |
| WANG Di, CHENG Bo. Application analysis of phase change thermal storage technology in building energy saving[J]. Housing and Real Estate, 2024(14): 123-125. | |
| [28] | ZHANG Xiaoyan, XU Muyan, LIU Lang, et al. Study on thermal performance of casing-type mine heat recovery device with phase change materials filling in annular space[J]. International Journal of Energy Research, 2021, 45(12): 17577-17596. |
| [29] | FERNÁNDEZ Angel G, Luis GONZÁLEZ-FERNÁNDEZ, GROSU Yaroslav, et al. Physicochemical characterization of phase change materials for industrial waste heat recovery applications[J]. Energies, 2022, 15(10): 3640. |
| [30] | 邬可谊. 泡沫金属相变蓄热换热器在余热利用中的模拟[J]. 中国石油大学学报(自然科学版), 2020, 44(5): 153-158. |
| WU Keyi. Simulation of heat exchanger based on phase change of foam metals in waste-heat recovery[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(5): 153-158. | |
| [31] | 马群. 金属相变微胶囊/陶瓷基复合相变蓄热材料的制备与性能研究[D]. 宁波: 宁波大学, 2022. |
| MA Qun. Preparation and properties of metal phase change microcapsules/ceramic matrix composite phase change thermal storage materials[D]. Ningbo: Ningbo University, 2022. | |
| [32] | ZHU Shilei, NGUYEN Mai Thanh, YONEZAWA Tetsu. Micro- and nano-encapsulated metal and alloy-based phase-change materials for thermal energy storage[J]. Nanoscale Advances, 2021, 3(16): 4626-4645. |
| [33] | NYALLANG NYAMSI Serge, TOLJ Ivan, LOTOTSKYY Mykhaylo. Metal hydride beds-phase change materials: Dual mode thermal energy storage for medium-high temperature industrial waste heat recovery[J]. Energies, 2019, 12(20): 3949. |
| [34] | MOSZOWSKI Bartosz, WAJMAN Tomasz, SOBCZAK Krzysztof, et al. The analysis of distribution of the reaction mixture in ammonia oxidation reactor[J]. Polish Journal of Chemical Technology, 2019, 21(1): 9-12. |
| [35] | XU Ningjin, COLLINS Don R. Design and characterization of a new oxidation flow reactor for laboratory and long-term ambient studies[J]. Atmospheric Measurement Techniques, 2021, 14(4): 2891-2906. |
| [36] | 高方林. 基于5 kW太阳模拟器聚集辐照下热化学反应器性能研究[D]. 唐山: 华北理工大学, 2023. |
| GAO Fanglin. Performance study of thermochemical reactor under concentrated radiation based on 5kW solar simulator[D].Tangshan: North China University of Science and Technology, 2023. | |
| [37] | 王晗, 张炀, 李宏, 等. 基于ANSYS的气化炉结构分析和优化设计[J]. 工业炉, 2018, 40(6): 45-48. |
| WANG Han, ZHANG Yang, LI Hong, et al. Structure analysis and optimization design of gasifier based on ANSYS[J]. Industrial Furnace, 2018, 40(6): 45-48. | |
| [38] | 程源洪, 张亚新, 肖建发, 等. 煤制天然气甲烷化反应器过程模拟与结构优化[J]. 煤炭转化, 2015, 38(4): 89-93. |
| CHENG Yuanhong, ZHANG Yaxin, XIAO Jianfa, et al. Process simulation and structure optimization of coal gas methanation reactor[J]. Coal Conversion, 2015, 38(4): 89-93. | |
| [39] | MOORE Stuart J, PINKARD Brian R, PUROHIT Anmol L, et al. Design of a small-scale supercritical water oxidation reactor. Part Ⅰ: Experimental characterization[J]. Industrial & Engineering Chemistry Research, 2021, 60(30): 11450-11457. |
| [44] | ZHOU Bo, TANG Guibin, SUN Maocun. Research on object-oriented pre-warning expert system of coal mine gas safety[J]. Geomatics World, 2013, 20(4): 78-81. |
| [45] | HU Jiaqi, HUANG Rui, XU Fangting. Data mining in coal-mine gas explosion accidents based on evidence-based safety: A case study in China[J]. Sustainability, 2022, 14(24): 16346. |
| [46] | SUN Zhenming, LI Dong. Coal mine gas safety evaluation based on adaptive weighted least squares support vector machine and improved Dempster-Shafer evidence theory[J]. Discrete Dynamics in Nature and Society, 2020, 2020: 8782450. |
| [47] | LIU Hang, ZHAO Zhifeng, XUE Zhaomei. Intelligent risk assessment model of coal mine gas explosion based on FTA and BP neural network[C]//2023 5th International Conference on Intelligent Control, Measurement and Signal Processing. Chengdu, China: IEEE, 2023: 1233-1237. |
| [48] | NIU Lixia, ZHAO Jin, YANG Jinhui. An impacting factors analysis of unsafe acts in coal mine gas explosion accidents based on HFACS-ISM-BN[J]. Processes, 2023, 11(4): 1055. |
| [49] | YANG Jinhui, ZHAO Jin, SHAO Liangshan. Risk assessment of coal mine gas explosion based on fault tree analysis and fuzzy polymorphic Bayesian network: A case study of Wangzhuang coal mine[J]. Processes, 2023, 11(9): 2619. |
| [40] | PUROHIT Anmol L, MISQUITH John A, PINKARD Brian R, et al. Design of a small-scale supercritical water oxidation reactor. Part Ⅱ: Numerical modeling[J]. Industrial & Engineering Chemistry Research, 2021, 60(30): 11458-11469. |
| [41] | 李磊. 瓦斯蓄热氧化低浓度瓦斯安全混配工艺设计[J]. 煤炭工程, 2019, 51(3): 33-36. |
| LI Lei. Design of safe mixing and regulation process for low concentration gas using gas storage thermal oxidation[J]. Coal Engineering, 2019, 51(3): 33-36. | |
| [42] | 党建亮, 聂尧. 基于AHP和FTA的煤矿瓦斯安全评价方法研究[J].内蒙古煤炭经济, 2015(2): 20-22. |
| DANG Jianliang, NIE Yao. Study of coal mine gas safety evaluation method based on AHP and FTA[J]. Inner Mongolia Coal Economy, 2015(2): 20-22. | |
| [43] | LI Bing, WANG Enyuan, SHANG Zheng, et al. Optimize the early warning time of coal and gas outburst by multi-source information fusion method during the tunneling process[J]. Process Safety and Environmental Protection, 2021, 149: 839-849. |
| [44] | 周波, 唐桂彬, 孙茂存. 基于面向对象的瓦斯安全预警专家系统研究[J]. 地理信息世界, 2013, 20(4): 78-81. |
| [1] | 李浩东, 沈胜强, 陈亮. 氨氢燃烧余热利用耦合氨裂解制氢过程数值模拟[J]. 化工进展, 2025, 44(8): 4443-4453. |
| [2] | 曾成, 卢苇, 蒙仕达, 覃日帅. 基于热流逸效应的燃煤电厂烟气二氧化碳分离系统[J]. 化工进展, 2022, 41(10): 5214-5220. |
| [3] | 张春伟, 张学军, 赵阳. 应用于空分纯化系统的相变储热器建模及分析[J]. 化工进展, 2021, 40(6): 3099-3106. |
| [4] | 王东亮, 孟文亮, 杨勇, 董鹏, 李春强. 热泵耦合甲醇多效精馏节能新工艺[J]. 化工进展, 2020, 39(9): 3550-3555. |
| [5] | 谢玮祎,陈晓平,马吉亮,刘道银,梁财,吴烨,蔡天意. 基于钠基吸附剂的烟气脱碳系统余热利用研究[J]. 化工进展, 2020, 39(2): 720-727. |
| [6] | 陈颢, 从海峰, 何林, 李洪, 高鑫, 李鑫钢. 进料组成对中部蒸汽压缩两段式精馏塔节能与经济效益的影响[J]. 化工进展, 2020, 39(12): 5042-5048. |
| [7] | 艾小杰, 尚晓峰, 谢頔, 何马瑞. 煤制烯烃与油制烯烃市场分析[J]. 化工进展, 2019, 38(s1): 128-132. |
| [8] | 王治红, 丁晓明, 吴明鸥, 沈晓燕. 有机朗肯循环在多品位余热发电中的应用[J]. 化工进展, 2019, 38(05): 2189-2196. |
| [9] | 陈光辉, 李升大, 陶少辉, 李建隆. 焦炉余热综合利用研究进展[J]. 化工进展, 2018, 37(10): 3799-3805. |
| [10] | 黄靖伦, 王辉涛, 葛众, 韩金蓉, 赵玲玲. 双压膨胀有机朗肯循环中低温余热发电系统的热力性能[J]. 化工进展, 2018, 37(09): 3303-3311. |
| [11] | 王明涛, 刘启一, 张百浩. 冷凝条件对基于混合工质的内燃机余热有机朗肯循环热力性能的影响[J]. 化工进展, 2018, 37(08): 2927-2934. |
| [12] | 洪永强, 陈桂芳, 马春元, 毛岩鹏, 杨德萍, 刘晓, 沈荣胜. 湿法脱硫废水液柱蒸发特性[J]. 化工进展, 2017, 36(07): 2698-2706. |
| [13] | 马有福, 杨丽娟. 褐煤锅炉冷端优化热力系统技术经济性比较[J]. 化工进展, 2016, 35(12): 4088-4095. |
| [14] | 许焕斌, 刘慧利, 李昂, 胡建杭. 铜渣催化气化木屑的实验研究和热力学分析[J]. 化工进展, 2016, 35(10): 3142-3148. |
| [15] | 王明涛, 方筝, 刘启一. 涡轮增压柴油机余热利用的有机郎肯循环烃类高温工质热力学分析[J]. 化工进展, 2016, 35(09): 2721-2727. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |