化工进展 ›› 2025, Vol. 44 ›› Issue (9): 5339-5350.DOI: 10.16085/j.issn.1000-6613.2024-1094
• 资源与环境化工 • 上一篇
孙梦圆1,2,3(
), 陆诗建1,2,3(
), 刘玲1,2,3(
), 薛艳阳1,2,3, 张云蓉1,2,3, 董琦1,2,3, 康国俊1,2,3
收稿日期:2024-07-08
修回日期:2024-09-13
出版日期:2025-09-25
发布日期:2025-09-30
通讯作者:
陆诗建,刘玲
作者简介:孙梦圆(1999—),女,硕士研究生,研究方向为碳捕集、利用与封存(CCUS)。E-mail:ts22040135p31@cumt.edu.cn。
基金资助:
SUN Mengyuan1,2,3(
), LU Shijian1,2,3(
), LIU Ling1,2,3(
), XUE Yanyang1,2,3, ZHANG Yunrong1,2,3, DONG Qi1,2,3, KANG Guojun1,2,3
Received:2024-07-08
Revised:2024-09-13
Online:2025-09-25
Published:2025-09-30
Contact:
LU Shijian, LIU Ling
摘要:
随着全球经济的快速发展,化石能源的过度使用导致了CO2的大量排放,加剧了气候变化和全球温室效应。碳捕集在此背景下应运而生,成为缓解环境压力的关键手段。金属有机框架(MOF)材料作为一种特殊晶态多孔材料,具有结构可调变性和微纳米构筑功能,通过不同的化学合成策略构建具有特定形貌和多孔的结构的衍生物材料,在气体储存与分离以及催化转化等领域表现出了优异的性能和应用前景。本文详细介绍了MOF及其衍生物在碳捕集领域中作为CO2固体吸附剂、膜分离材料和化学吸收法解吸催化剂方面的应用进展,总结了碳捕集材料的分类、合成与调变方法以及相关反应机理,提出了MOF及衍生材料在实际应用中面临稳定性、再生性、规模化生产等挑战,并对未来的研究方向进行了展望。MOF及其衍生物在碳捕集中的应用有望为解决全球碳排放问题提供新的思路和解决方案,从而助力实现碳中和目标。
中图分类号:
孙梦圆, 陆诗建, 刘玲, 薛艳阳, 张云蓉, 董琦, 康国俊. 金属有机框架及衍生物在碳捕集领域的研究进展[J]. 化工进展, 2025, 44(9): 5339-5350.
SUN Mengyuan, LU Shijian, LIU Ling, XUE Yanyang, ZHANG Yunrong, DONG Qi, KANG Guojun. Research progress of MOF and their derivatives in carbon capture[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5339-5350.
| 种类 | 组成 | 优点 | 缺陷 | 参考文献 |
|---|---|---|---|---|
| MIL | 由过渡金属离子和有机配体组成 | 优良的化学稳定性和机械稳定性 | 制备成本高昂、合成耗时过长 | [ |
| ZIF | 含氮有机配体和二价金属阳离子 | 较高的孔隙率,优良的热稳定性和化学稳定性 | 亲水性导致其对CO2吸附效率低 | [ |
| UiO | Zr4+和二元羧酸配体 | 丰富的开放金属位点,超高的比表面积和CO2吸附容量 | 吸附选择性差,尤其对CO2/N2混合物的选择性 | [ |
表1 常用的MOF吸附剂特性
| 种类 | 组成 | 优点 | 缺陷 | 参考文献 |
|---|---|---|---|---|
| MIL | 由过渡金属离子和有机配体组成 | 优良的化学稳定性和机械稳定性 | 制备成本高昂、合成耗时过长 | [ |
| ZIF | 含氮有机配体和二价金属阳离子 | 较高的孔隙率,优良的热稳定性和化学稳定性 | 亲水性导致其对CO2吸附效率低 | [ |
| UiO | Zr4+和二元羧酸配体 | 丰富的开放金属位点,超高的比表面积和CO2吸附容量 | 吸附选择性差,尤其对CO2/N2混合物的选择性 | [ |
| 分类 | 结构特性 | 典型代表 | 参考文献 |
|---|---|---|---|
| 沸石咪唑骨架(ZIF) | 类沸石的MOs材料;过渡金属(Zn或Co)与氮杂环构建的多孔材料 | ZIF-7、ZIF-8、ZIF-11等 | [ |
| 拉瓦锡骨架(MIL) | 多孔金属羧酸化合物;由金属离子(Al、Cr、Ti等)与芳香羧酸构成;晶体结构呈八面体 | MIL-53(Al)、MIL-100(Al)、MIL-101(Cr)等 | [ |
| 铜基MOF | 由铜离子和有机配体自组装形成的三维网状多孔材料 | Pebax-NH2-CuBTC: Cu3(BTC)2-Ultem等 | [ |
| 锆基MOF | 金属中心Zr与苯-1,4-二羧酸酯(BDC)形成的立方晶体骨架材料;孔径为0.6nm | UiO-66等 | [ |
表2 MMM的常用金属有机骨架填料特性
| 分类 | 结构特性 | 典型代表 | 参考文献 |
|---|---|---|---|
| 沸石咪唑骨架(ZIF) | 类沸石的MOs材料;过渡金属(Zn或Co)与氮杂环构建的多孔材料 | ZIF-7、ZIF-8、ZIF-11等 | [ |
| 拉瓦锡骨架(MIL) | 多孔金属羧酸化合物;由金属离子(Al、Cr、Ti等)与芳香羧酸构成;晶体结构呈八面体 | MIL-53(Al)、MIL-100(Al)、MIL-101(Cr)等 | [ |
| 铜基MOF | 由铜离子和有机配体自组装形成的三维网状多孔材料 | Pebax-NH2-CuBTC: Cu3(BTC)2-Ultem等 | [ |
| 锆基MOF | 金属中心Zr与苯-1,4-二羧酸酯(BDC)形成的立方晶体骨架材料;孔径为0.6nm | UiO-66等 | [ |
| [1] | 郭宇, 袁东野, 陈秋华, 等. 碳捕捉利用与封存技术发展浅析[J]. 中国设备工程, 2024(5): 225-227. |
| GUO Yu, YUAN Dongye, CHEN Qiuhua, et al. Analysis on the development of carbon capture, utilization and storage technology[J]. China Plant Engineering, 2024(5): 225-227. | |
| [2] | 尹建华, 梁雄, 谢小明, 等. 二氧化碳捕集、 利用与封存技术应用研究[J]. 山西化工, 2024, 44(3): 261-262. |
| YIN Jianhua, LIANG Xiong, XIE Xiaoming, et al. Research on the application of carbon dioxide capture, utilization, and storage technology[J]. Shanxi Chemical Industry, 2024, 44(3): 261-262. | |
| [3] | GU Changwan, LI Kai, GAO Shikang, et al. CO2 abatement feasibility for blast furnace CCUS retrofits in BF-BOF steel plants in China[J]. Energy, 2024, 294: 130756. |
| [4] | YANG Xuexian, LI Chong, CHEN Shumei, et al. Layer by layer spraying fabrication of aggregation-induced emission metal-organic frameworks thin film[J]. Chemistry, 2024, 30(24): e202400350. |
| [5] | Celia CASTILLO-BLAS, CHESTER Ashleigh M, KEEN David A, et al. Thermally activated structural phase transitions and processes in metal-organic frameworks[J]. Chemical Society Reviews, 2024, 53(7): 3606-3629. |
| [6] | ZHOU Jianen, R Chenna Krishna REDDY, ZHONG Ao, et al. Metal-organic framework-based materials for advanced sodium storage: Development and anticipation[J]. Advanced Materials, 2024, 36(16): 2312471. |
| [7] | PARASHAR Shivam, NEIMARK Alexander V. Pore structure compartmentalization for advanced characterization of metal-organic framework materials[J]. Journal of Chemical Information and Modeling, 2024, 64(8): 3260-3268. |
| [8] | ZHANG Ziyi, DING Honglei, PAN Weiguo, et al. Research progress of metal-organic frameworks (MOFs) for CO2 conversion in CCUS[J]. Journal of the Energy Institute, 2023, 108: 101226. |
| [9] | WEEWER A. Beitrag zur Konstitution anorganischer Verbindungen[J]. Monatsh. Chem, 1893, 6: 267-330. |
| [10] | LI H, EDDAOUDI M, O'KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279. |
| [11] | YAGHI O M, LI H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. Journal of the American Chemical Society, 1995, 117(41): 10401-10402. |
| [12] | MENG Wei, SUN Lin, LONG Yuhao, et al. A novel luminescent phosphor of a metal-organic framework with orange-red emission[J]. New Journal of Chemistry, 2022, 46(3): 933-935. |
| [13] | TCHINSA Audrey, HOSSAIN Md Faysal, WANG Tong, et al. Removal of organic pollutants from aqueous solution using metal organic frameworks (MOFs)-based adsorbents: A review[J]. Chemosphere, 2021, 284: 131393. |
| [14] | FATIMA Syeda Fiza, SABOUNI Rana, GARG Renuka, et al. Recent advances in metal-organic frameworks as nanocarriers for triggered release of anticancer drugs: Brief history, biomedical applications, challenges and future perspective[J]. Colloids and Surfaces B: Biointerfaces, 2023, 225: 113266. |
| [15] | CHALK Steven G, MILLER James F. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems[J]. Journal of Power Sources, 2006, 159(1): 73-80. |
| [16] | YANG Dujuan, TIMMERMANS Harry. Households transport-home energy conservation strategies in response to energy price policies: A stated adaptation experiment based on portfolio choices and cross effects designs[J]. International Journal of Sustainable Transportation, 2017, 11(2): 133-147. |
| [17] | Eva DÍAZ, Emilio MUÑOZ, VEGA Aurelio, et al. Enhancement of the CO2 retention capacity of Y zeolites by Na and Cs treatments: Effect of adsorption temperature and water treatment[J]. Industrial & Engineering Chemistry Research, 2008, 47(2): 412-418. |
| [18] | ZHANG Jun, WEBLEY Paul A, XIAO Penny. Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas[J]. Energy Conversion and Management, 2008, 49(2): 346-356. |
| [19] | MILLWARD Andrew R, YAGHI Omar M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. Journal of the American Chemical Society, 2005, 127(51): 17998-17999. |
| [20] | XIN Chunling, HOU Shufen, YU Lei, et al. Controlled synthesis of Mg-MOF-74 and its CO2 adsorption in flue gas[J]. Coatings, 2024, 14(4): 383. |
| [21] | ZHAO Meng, YANG Yun, GU Xuesong. MOF based CO2 capture: Adsorption and membrane separation[J]. Inorganic Chemistry Communications, 2023, 152: 110722. |
| [22] | AN Haifei, TIAN Weijian, LU Xin, et al. Boosting the CO2 adsorption performance by defect-rich hierarchical porous Mg-MOF-74[J]. Chemical Engineering Journal, 2023, 469: 144052. |
| [23] | GHANBARI Taravat, ABNISA Faisal, WAN DAUD Wan Mohd Ashri. A review on production of metal organic frameworks (MOF) for CO2 adsorption[J]. Science of the Total Environment, 2020, 707: 135090. |
| [24] | YOUNAS Mohammad, REZAKAZEMI Mashallah, DAUD Muhammad, et al. Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs)[J]. Progress in Energy and Combustion Science, 2020, 80: 100849. |
| [25] | LLEWELLYN Philip L, BOURRELLY Sandrine, SERRE Christian, et al. High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101[J]. Langmuir, 2008, 24(14): 7245-7250. |
| [26] | JIANG Kun, YANG Jian, ZHOU Yuxin, et al. Synergetic enhancement of CO2 direct air capture with monoethanolamine-impregnated MIL-101(Cr) MOFs[J]. Microporous and Mesoporous Materials, 2024, 366: 112920. |
| [27] | YANG Ke, CHENG Sisi, YAO Ziqin, et al. Amine-grafted MIL-101(Cr) and Cu-BTC via post-synthetic modification for synergistic enhancement of CO2 uptake[J]. Solid State Sciences, 2024, 153: 107572. |
| [28] | BANERJEE Rahul, FURUKAWA Hiroyasu, BRITT David, et al. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties[J]. Journal of the American Chemical Society, 2009, 131(11): 3875-3877. |
| [29] | JIANG Shan, LIU Jingyan, GUAN Jiwen, et al. Enhancing CO2 adsorption capacity of ZIF-8 by synergetic effect of high pressure and temperature[J]. Scientific Reports, 2023, 13: 17584. |
| [30] | 李超. ZIF-8/壳聚糖复合材料的制备及其二氧化碳吸附性能研究[D]. 兰州: 兰州交通大学, 2022. |
| LI Chao. Preparation of ZIF-8/chitosan composite and its carbon dioxide adsorption properties[D]. Lanzhou: Lanzhou Jiatong University, 2022. | |
| [31] | LI Peng, SUN Yuxiu, ZHANG Zhengqing, et al. Preparation of UiO-66 membrane through heterogeneous nucleation assisted growth strategy for efficient CO2 capture under humid conditions[J]. Separation and Purification Technology, 2024, 351: 128067. |
| [32] | WANG Boyan, ZENG Jing, HE Hanbing. Enhanced CO2 adsorption and selectivity over N2 and CH4 in UiO-67 modified by loading CuO NPs through solvent exchange[J]. CrystEngComm, 2024, 26(9): 1328-1338. |
| [33] | LIN Jianbin, NGUYEN Tai T T, VAIDHYANATHAN Ramanathan, et al. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture[J]. Science, 2021, 374(6574): 1464-1469. |
| [34] | 赵娟霞. ZrO2及Zr基MOFs材料CO2吸附性能研究[D]. 呼和浩特: 内蒙古大学, 2021. |
| ZHAO Juanxia. Study on adsorption properties of ZrO2 and Zr-based MOFs materials CO2 [D]. Hohhot: Inner Mongolia University, 2021. | |
| [35] | PAN Ying, ZHAO Yuxin, MU Shanjun, et al. Cation exchanged MOF-derived nitrogen-doped porous carbons for CO2 capture and supercapacitor electrode materials[J]. Journal of Materials Chemistry A, 2017, 5(20): 9544-9552. |
| [36] | WANG Yifei, XU Jiahao, LIN Xunlei, et al. Facile synthesis of MOF-5-derived porous carbon with adjustable pore size for CO2 capture[J]. Journal of Solid State Chemistry, 2023, 322: 123984. |
| [37] | WANG Yifei, SUO Yange, XU Yousheng, et al. Enhancing CO2 adsorption performance of porous nitrogen-doped carbon materials derived from ZIFs: Insights into pore structure and surface chemistry[J]. Separation and Purification Technology, 2024, 335: 126117. |
| [38] | LIU Zixiao, LU Yonglian, WANG Chunfen, et al. MOF-derived nano CaO for highly efficient CO2 fast adsorption[J]. Fuel, 2023, 340: 127476. |
| [39] | WU Szu-Chen, CHANG Po-Hsueh, LIN Chieh-Yen, et al. Multi-metals CaMgAl metal-organic framework as CaO-based sorbent to achieve highly CO2 capture capacity and cyclic performance[J]. Materials, 2020, 13(10): 2220. |
| [40] | HOU Rujing, FONG Celesta, FREEMAN Benny D, et al. Current status and advances in membrane technology for carbon capture[J]. Separation and Purification Technology, 2022, 300: 121863. |
| [41] | AROON M A, ISMAIL A F, MATSUURA T, et al. Performance studies of mixed matrix membranes for gas separation: A review[J]. Separation and Purification Technology, 2010, 75(3): 229-242. |
| [42] | HAMID Mohamad Rezi Abdul, JEONG Hae-Kwon. Recent advances on mixed-matrix membranes for gas separation: Opportunities and engineering challenges[J]. Korean Journal of Chemical Engineering, 2018, 35(8): 1577-1600. |
| [43] | CHENG Youdong, YING Yunpan, JAPIP Susilo, et al. Membrane technology: Advanced porous materials in mixed matrix membranes[J]. Advanced Materials, 2018, 30(47): 1802401. |
| [44] | JIA Qian, LASSEUGUETTE Elsa, LOZINSKA Magdalena M, et al. Hybrid Benzimidazole-dichloroimidazole zeolitic imidazolate frameworks based on ZIF-7 and their application in mixed matrix membranes for CO2/N2 separation[J]. ACS Applied Materials & Interfaces, 2022, 14(41): 46615-46626. |
| [45] | Marta PÉREZ-MIANA, LUQUE-ALLED José Miguel, YAHIA Mohamed, et al. ZIF-8 modified with 2-undecylimidazolate as filler for mixed matrix membranes for CO2 separation[J]. Journal of Materials Chemistry A, 2024, 12(17): 10316-10328. |
| [46] | YUMRU Ahenk Burcu, SAFAK BOROGLU Mehtap, Ismail BOZ. ZIF-11/Matrimid® mixed matrix membranes for efficient CO2, CH4, and H2 separations[J]. Greenhouse Gases: Science and Technology, 2018, 8(3): 529-541. |
| [47] | QIN Zikang, MA Yulei, DU Wentao, et al. Mixed matrix membranes (MMMs) with amine-functionalized ZIF-L for enhanced CO2 separation performance[J]. Separation and Purification Technology, 2024, 344: 126831. |
| [48] | MESHKAT Shadi, KALIAGUINE Serge, RODRIGUE Denis. Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax® MH-1657 for CO2 separation[J]. Separation and Purification Technology, 2018, 200: 177-190. |
| [49] | LESTARI Witri Wahyu, ADAWIYAH Robiah AL, KHAFIDHIN Moh Ali, et al. CO2 gas separation using mixed matrix membranes based on polyethersulfone/MIL-100(Al)[J]. Open Chemistry, 2021, 19(1): 307-321. |
| [50] | SUNDER Naveen, FONG Yeong-Yin, BUSTAM Mohamad Azmi, et al. Study on the performance of cellulose triacetate hollow fiber mixed matrix membrane incorporated with amine-functionalized NH2-MIL-125(Ti) for CO2 and CH4 separation[J]. Separations, 2023, 10(1): 41. |
| [51] | 马英楠, 何兴艳, 唐少华, 等. MOFs/PEI混合基质膜的制备及CO2分离性能研究[J]. 化学工业与工程, 2023, 40(3): 84-95. |
| MA Yingnan, HE Xingyan, TANG Shaohua, et al. Preparation and CO2 separation performance of MOFs/PEI mixed matrix membranes[J]. Chemical Industry and Engineering, 2023, 40(3): 84-95. | |
| [52] | 王立维, 王娟娟, 王永洪, 等. 聚乙烯胺/Cu3(BTC)2-MMT-NH2混合基质膜的制备及气体传递性能[J]. 化工学报, 2022, 73(7): 3068-3077. |
| WANG Juanjuan, WANG Yonghong, et al. Gas transport properties of PVAm-based mixed matrix membranes by incorporating with Cu3(BTC)2-MMT-NH2 [J]. CIESC Journal, 2022, 73(7): 3068-3077. | |
| [53] | LIU Niu, CHENG Jun, HU Leiqing, et al. Boosting CO2 transport of poly(ethylene oxide) membranes by hollow Rubik-like “expressway” channels with anion pillared hybrid ultramicroporous materials[J]. Chemical Engineering Journal, 2022, 427: 130845. |
| [54] | AHMAD Mohd Zamidi, PETERS Thijs A, KONNERTZ Nora M, et al. High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes[J]. Separation and Purification Technology, 2020, 230: 115858. |
| [55] | YAHIA Mohamed, LOZANO Luis A, ZAMARO Juan M, et al. Microwave-assisted synthesis of metal-organic frameworks UiO-66 and MOF-808 for enhanced CO2/CH4 separation in PIM-1 mixed matrix membranes[J]. Separation and Purification Technology, 2024, 330: 125558. |
| [56] | VEETIL Kavya Adot, HUSNA Asmaul, KABIR Md Homayun, et al. Developing mixed matrix membranes with good CO2 separation performance based on PEG-modified UiO-66 MOF and 6FDA-durene polyimide[J]. Polymers, 2023, 15(22): 4442. |
| [57] | WANG Yonghong, MA Zhiwei, ZHANG Xinru, et al. Mixed-matrix membranes consisting of Pebax and novel nitrogen-doped porous carbons for CO2 separation[J]. Journal of Membrane Science, 2022, 644: 120182. |
| [58] | 刘牛. 强吸碳MOFs及衍生多孔材料掺杂混合基质膜选择性分离CO2研究[D]. 杭州: 浙江大学, 2022. |
| LIU Niu. Selective separation of CO2 by mixed matrix membrane doped with strong carbon-absorbing MOFs and derived porous materials[D]. Hangzhou: Zhejiang University, 2022. | |
| [59] | ALIVAND Masood S, MAZAHERI Omid, WU Yue, et al. Catalytic solvent regeneration for energy-efficient CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(51): 18755-18788. |
| [60] | BHATTI Umair H, Sungchan NAM, PARK Sungyoul, et al. Performance and mechanism of metal oxide catalyst-aided amine solvent regeneration[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12079-12087. |
| [61] | LIU Yitao, ZHANG Peng, SUN Ning, et al. Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage[J]. Advanced Materials, 2018, 30(23): 1707334. |
| [62] | WENG Xiaole, SUN Pengfei, LONG Yu, et al. Catalytic oxidation of chlorobenzene over Mn x Ce1- x O2/HZSM-5 catalysts: A study with practical implications[J]. Environmental Science & Technology, 2017, 51(14): 8057-8066. |
| [63] | XIAO Gao, ZHOU Jianfei, HUANG Xin, et al. Facile synthesis of mesoporous sulfated Ce/TiO2 nanofiber solid superacid with nanocrystalline frameworks by using collagen fibers as a biotemplate and its application in esterification[J]. RSC Advances, 2014, 4(8): 4010-4019. |
| [64] | GONG Wei, LIU Yan, LI Haiyang, et al. Metal-organic frameworks as solid Brønsted acid catalysts for advanced organic transformations[J]. Coordination Chemistry Reviews, 2020, 420: 213400. |
| [65] | ZHANG Xiaowen, HONG Jieling, LIU Helei, et al. SO4 2-/ZrO2 supported on γ-Al2O3 as a catalyst for CO2 desorption from CO2-loaded monoethanolamine solutions[J]. AIChE Journal, 2018, 64(11): 3988-4001. |
| [66] | XING Lei, WEI Kexin, LI Yuchen, et al. TiO2 coating strategy for robust catalysis of the metal-organic framework toward energy-efficient CO2 capture[J]. Environmental Science & Technology, 2021, 55(16): 11216-11224. |
| [67] | HALL Jacklyn N, BOLLINI Praveen. Metal-organic framework MIL-100 catalyzed acetalization of benzaldehyde with methanol: Lewis or Brønsted acid catalysis?[J]. ACS Catalysis, 2020, 10(6): 3750-3763. |
| [68] | ALIVAND Masood S, MAZAHERI Omid, WU Yue, et al. Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture[J]. Nature Communications, 2022, 13(1): 1249. |
| [69] | TRICKETT Christopher A, OSBORN POPP Thomas M, SU Ji, et al. Identification of the strong Brønsted acid site in a metal-organic framework solid acid catalyst[J]. Nature Chemistry, 2019, 11(2): 170-176. |
| [70] | WEI Kexin, XING Lei, LI Yuchen, et al. Heteropolyacid modified cerium-based MOFs catalyst for amine solution regeneration in CO2 capture[J]. Separation and Purification Technology, 2022, 293: 121144. |
| [1] | 刘克峰, 董卫刚, 胡雪生, 刘陶然, 周华群, 时文, 万子岸, 高飞. 推动二氧化碳捕集、输送、应用和封存发展的政策和举措[J]. 化工进展, 2025, 44(9): 4879-4897. |
| [2] | 周敬皓, 张朝阳, 胡昊星, 王思茗, 刘静远, 魏光华. 基于格子玻尔兹曼方法的PEMFC微孔层气体传质分析[J]. 化工进展, 2025, 44(9): 4898-4907. |
| [3] | 陈子朝, 何方书, 胡强, 杨扬, 陈汉平, 杨海平. 甲烷干重整抗积炭Ni基催化剂研究进展[J]. 化工进展, 2025, 44(9): 4968-4978. |
| [4] | 王振, 张耀远, 吴芹, 史大昕, 陈康成, 黎汉生. 甲烷干重整用Ni/Al2O3基催化剂研究进展[J]. 化工进展, 2025, 44(9): 4979-4998. |
| [5] | 张海鹏, 秦珊珊, 王俣萱, 于海彪. 3.0F-Ag x Co催化剂的制备及其催化分解N2O[J]. 化工进展, 2025, 44(9): 4999-5005. |
| [6] | 符红梅, 刘定华, 刘晓勤. MOF材料在芳烃同分异构体分离中的研究进展[J]. 化工进展, 2025, 44(9): 5006-5017. |
| [7] | 左启斌, 张涵, 孙传付, 胡桂林, 夏玉珍. 镍/石墨烯涂层在质子交换膜燃料电池泡沫金属流场上的应用[J]. 化工进展, 2025, 44(9): 5195-5201. |
| [8] | 王晋, 贺晓蕊, 江壮壮, 冯勇, 刘城, 沈星汉. 车用燃料电池质子交换膜气体渗透率的理论计算和实验[J]. 化工进展, 2025, 44(9): 5202-5210. |
| [9] | 袁博, 勾佳宣, 李玉壮, 刘群, 徐坤, 张钰. 基于管式陶瓷载体的碳化ZIF-67掺入PDMS混合基质膜及其渗透汽化回收乙醇应用[J]. 化工进展, 2025, 44(9): 5211-5223. |
| [10] | 王睿, 王海澜, 戴若彬, 王志伟. 工业废水深度处理反渗透膜硅污染研究进展:机理、影响因素与控制策略[J]. 化工进展, 2025, 44(9): 5315-5326. |
| [11] | 杨证禄, 杨立峰, 路晓飞, 锁显, 张安运, 崔希利, 邢华斌. 机器学习加速多孔吸附剂筛选发现的研究进展[J]. 化工进展, 2025, 44(8): 4288-4301. |
| [12] | 王肖肖, 孔福林, 李小宇, 任永强, 许世森. CO2吸收剂在开孔规整填料表面微尺度流动模拟[J]. 化工进展, 2025, 44(8): 4311-4321. |
| [13] | 黄可儿, 刘佳豪, 李昊明, 周天航, 高金森, 蓝兴英. 基于分子动力学模拟的胺溶剂碳捕集过程自扩散系数[J]. 化工进展, 2025, 44(8): 4352-4364. |
| [14] | 赵用明, 卜亿峰, 王涛, 杜冰, 门卓武. 费托合成催化剂动态置换与稳态工艺的集成优化[J]. 化工进展, 2025, 44(8): 4536-4544. |
| [15] | 秘一芳, 王保国, 王文强, 孙国金, 曹志海. 氮自掺杂蓝藻生物质基活性炭的制备及其CO2吸附性能[J]. 化工进展, 2025, 44(7): 4223-4232. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |