化工进展 ›› 2025, Vol. 44 ›› Issue (9): 5432-5441.DOI: 10.16085/j.issn.1000-6613.2024-1121
• 资源与环境化工 • 上一篇
鲁玲1(
), 俞磊1, 顾霞1, 赖敏明2, 周凯1, 王亚鹏3, 李响1(
)
收稿日期:2024-07-12
修回日期:2024-08-31
出版日期:2025-09-25
发布日期:2025-09-30
通讯作者:
李响
作者简介:鲁玲(2000—),女,硕士研究生,研究方向为固废处理与资源化。E-mail:13705531350@163.com。
基金资助:
LU Ling1(
), YU Lei1, GU Xia1, LAI Minming2, ZHOU Kai1, WANG Yapeng3, LI Xiang1(
)
Received:2024-07-12
Revised:2024-08-31
Online:2025-09-25
Published:2025-09-30
Contact:
LI Xiang
摘要:
制药废盐母液中含有高浓度、难降解有机污染物,被列为危险废物,处理不当会对环境造成严重危害。本研究开发了一种高效、低成本的制药废盐资源化处理技术,采用水热氧化法,结合自制的金属盐碳化结晶剂,对江苏某制药厂的高浓度乙酸钠废盐母液进行热催化处理,探究了反应温度、时间和催化剂投加量对母液中有机物去除率及乙酸钠保留率的影响。结果表明,在210℃、6h、催化剂投加量为5g/50mL的最佳条件下,母液中有机物去除率高达93.5%,同时乙酸钠保留率为95.8%。经傅里叶红外光谱仪(FTIR)、气相色谱质谱联用仪(GC-MS)等分析表明,热催化处理后,母液中的吡啶类等有毒有害有机污染物被有效去除,所得乙酸钠回收盐的色度、化学需氧量(COD)、重金属等指标均达到企业回用标准。本研究提出的热催化处理技术可有效降低制药废盐的环境风险,并实现资源化利用,为制药行业的可持续发展提供新思路。
中图分类号:
鲁玲, 俞磊, 顾霞, 赖敏明, 周凯, 王亚鹏, 李响. 制药废盐的高效热催化处理及资源化利用[J]. 化工进展, 2025, 44(9): 5432-5441.
LU Ling, YU Lei, GU Xia, LAI Minming, ZHOU Kai, WANG Yapeng, LI Xiang. Efficient thermocatalytic and resource utilization of pharmaceutical waste salt[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5432-5441.
| 项目 | COD/g·L-1 | 溶解氧(DO)/mg·L-1 | SS值/g·L-1 | 氨氮(NH4+-N)/mg·L-1 | pH | 色度 | |
|---|---|---|---|---|---|---|---|
| 数值 | 301 | 2.36 | 0.79 | 249 | 8.17 | 30000~32000 | |
表1 高盐母液基本性质
| 项目 | COD/g·L-1 | 溶解氧(DO)/mg·L-1 | SS值/g·L-1 | 氨氮(NH4+-N)/mg·L-1 | pH | 色度 | |
|---|---|---|---|---|---|---|---|
| 数值 | 301 | 2.36 | 0.79 | 249 | 8.17 | 30000~32000 | |
| 项目 | Al3+/mg·L-1 | Ca2+/mg·L-1 | Fe2+/mg·L-1 | Na+/g·L-1 | Mg2+/mg·L-1 | K+/mg·L-1 | Mn2+/mg·L-1 | Zn2+/mg·L-1 |
|---|---|---|---|---|---|---|---|---|
| 数值 | 7.895 | 47.185 | 2.685 | 81.879 | 86.825 | 177.995 | ≤0.001 | 1.01 |
表2 高盐母液金属含量
| 项目 | Al3+/mg·L-1 | Ca2+/mg·L-1 | Fe2+/mg·L-1 | Na+/g·L-1 | Mg2+/mg·L-1 | K+/mg·L-1 | Mn2+/mg·L-1 | Zn2+/mg·L-1 |
|---|---|---|---|---|---|---|---|---|
| 数值 | 7.895 | 47.185 | 2.685 | 81.879 | 86.825 | 177.995 | ≤0.001 | 1.01 |
| [1] | 王年禧, 霍慧敏, 何艺, 等. 化工废盐产生和处理技术研究进展及启示[J]. 环境工程学报, 2024(11): 3149-3156. |
| WANG Nianxi, HUO Huimin, HE Yi, et al. Research progress and inspiration on the generation and treatment technology of chemical waste salt[J]. Chinese Journal of Environmental Engineering, 2024(11): 3149-3156. | |
| [2] | 韩飞, 康国仙, 王棋, 等. 制药工业废水处理及其脱色的研究进展[J]. 江西中医药, 2015, 46(11): 70-73. |
| HAN Fei, KANG Guoxian, WANG Qi, et al. Research progress of wastewater treatment and decoloration in pharmaceutical industry[J]. Jiangxi Journal of Traditional Chinese Medicine, 2015, 46(11): 70-73. | |
| [3] | 樊锐, 刘玉坤. 工业废盐资源化处置现状及分析[J]. 环境与发展, 2020, 32(8): 52-53. |
| FAN Rui, LIU Yukun. Current situation and analysis of industrial waste salt resource disposal[J]. Environment and Development, 2020, 32(8): 52-53. | |
| [4] | 李国骁, 曾永寿. 工业废盐资源化利用及废盐电解使用经验[J]. 中国氯碱, 2021(12): 5-10. |
| LI Guoxiao, ZENG Yongshou. Resource utilization and electrolysis experience of industrial waste salt[J]. China Chlor-Alkali, 2021(12): 5-10. | |
| [5] | 赖敏明, 徐先宝, 李响. 工业废盐的处理及其资源化研究进展[J]. 应用化工, 2023, 52(1): 215-218. |
| LAI Minming, XU Xianbao, LI Xiang. Research progress on the treatment and resource utilization of industrial waste salt[J]. Applied Chemical Industry, 2023, 52(1): 215-218. | |
| [6] | 李响, 王静, 薛罡, 等. 一种碳化结晶处理高盐高有机废水的方法: CN108558102B[P]. 2020-12-15. |
| LI Xiang, WANH Jing, XUE Gang, et al. A method of treating high salt and high organic wastewater by carbonation crystallization: CN108558102B[P]. 2020-12-15. | |
| [7] | 胡卫平, 贺周初, 朱文新, 等. 农药副产废盐渣的无害化处理及利用[J]. 精细化工中间体, 2013, 43(3): 48-50. |
| HU Weiping, HE Zhouchu, ZHU Wenxin, et al. Innocuous treatment and recycling of waste salts formed in pesticides production[J]. Fine Chemical Intermediates, 2013, 43(3): 48-50. | |
| [8] | 邓雅清, 曾宪坤, 张胜露. 工业废盐中有机物脱除工艺[J]. 有色金属(冶炼部分), 2024(4): 147-152. |
| DENG Yaqing, ZENG Xiankun, ZHANG Shenglu. Removal process of organics from industrial waste salt[J]. Nonferrous Metals (Extractive Metallurgy), 2024(4): 147-152. | |
| [9] | 焦锟鹏, 赵子涛, 犹成裔, 等. 五彩湾次烟煤醇解可溶物的组成特征与不溶物的快速热解产物分布[J]. 化工进展, 2024, 43(5): 2449-2462. |
| JIAO Kunpeng, ZHAO Zitao, YOU Chengyi, et al. Composition of the alkanolyses soluble portion and pyrolytic products distribution of the insoluble portion from Wucaiwan sub-bituminous coal[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2449-2462. | |
| [10] | SHI Yufei, LI Shengnan, WANG Liye, et al. Compositional characteristics of dissolved organic matter in pharmaceutical wastewater effluent during ozonation[J]. Science of the Total Environment, 2021, 778: 146278. |
| [11] | CHEN Yushuang, SHI Rui, LUO Hongjun, et al. Alkali-catalyzed hydrothermal oxidation treatment of triclosan in soil: Mechanism, degradation pathway and toxicity evaluation[J]. Science of the Total Environment, 2023, 856: 159187. |
| [12] | ZHANG Guangwei, OKAJIMA Idzumi, SAKO Takeshi. Decomposition and decoloration of dyeing wastewater by hydrothermal oxidation[J]. The Journal of Supercritical Fluids, 2016, 112: 136-142. |
| [13] | 赵若含, 邬倩倩, 郑土才, 等. 吡啶类化合物合成氯代吡啶的研究进展[J]. 化工生产与技术, 2015, 21(2): 23-29. |
| ZHAO Ruohan, WU Qianqian, ZHENG Tucai, et al. Research advances in the synthesis of chloropyridines from pyridines[J]. Chemical Production and Technology, 2015, 21(2): 23-29. | |
| [14] | 陈萍, 李丹丹, 符继红, 等. 微波辅助GO/Fe3O4/ZIF-8磁固相萃取-气相色谱-质谱联用分析薰衣草中的挥发性成分[J]. 分析化学, 2022, 50(5): 747-761. |
| CHEN Ping, LI Dandan, FU Jihong, et al. Microwave-assisted GO/Fe3O4/ZIF-8 magnetic solid phase extraction combined with gas chromatography-mass spectrometry for determination of volatile components in lavender[J]. Chinese Journal of Analytical Chemistry, 2022, 50(5): 747-761. | |
| [15] | 李剑, 蒲舸, 陈家善, 等. 常见钠盐的高温挥发特性及热解机理[J]. 化工学报, 2020, 71(8): 3452-3459. |
| LI Jian, PU Ge, CHEN Jiashan, et al. High-temperature volatility characteristics and pyrolysis mechanism of common sodium salts[J]. CIESC Journal, 2020, 71(8): 3452-3459. | |
| [16] | 葛英凯, 么秋香, 周小钰, 等. 中低温煤焦油分离-催化裂化技术研究进展[J]. 广东化工, 2024, 51(2): 63-64. |
| GE Yingkai, YAO Qiuxiang, ZHOU Xiaoyu, et al. Research progress of separation and catalytic cracking of medium-low temperature coal tar[J]. Guangdong Chemical Industry, 2024, 51(2): 63-64. | |
| [17] | 许起, 钟凯琪, 韩文智. 褐煤氧化过程官能团变化特性研究[J]. 煤炭工程, 2022, 54(5): 152-158. |
| XU Qi, ZHONG Kaiqi, HAN Wenzhi. Variation of key functional groups in lignite oxidation[J]. Coal Engineering, 2022, 54(5): 152-158. | |
| [18] | 翟增秀, 崔焕文, 王亘, 等. 典型制药企业污水站VOCs废气和恶臭排放特征[J]. 环境化学, 2025, 44(3): 1-9. |
| ZHAI Zengxiu, CUI huanwen, WANG Gen, et al. Analysis for VOCs and odor emission characteristics treatment stations in the pharmaceutical industry[J]. Enyironmental Chemistry, 2025, 44(3): 1-9. | |
| [19] | FENG Ling, TIAN Binghui, ZHANG Lili, et al. Pyrolysis of hydrazine hydrate waste salt: Thermal behaviors and transformation characteristics of organics under aerobic/anaerobic conditions[J]. Journal of Environmental Management, 2022, 323: 116304. |
| [20] | 朱振茂, 严大鹏, 黄泽华, 等. 基于氮掺杂碳量子点荧光探针检测谷胱甘肽[J]. 分析试验室, 2023, 42(11): 1508-1515. |
| ZHU Zhenmao, YAN Dapeng, HUANG Zehua, et al. Detection of glutathione based on nitrogen-doped carbon dots as a fluorescence probe[J]. Chinese Journal of Analysis Laboratory, 2023, 42(11): 1508-1515. | |
| [21] | ZHU Xiangdong, YANG Shijun, WANG Liang, et al. Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology[J]. Environmental Pollution, 2016, 211: 20-27. |
| [22] | FENG Ling, TIAN Binghui, CHEN Li, et al. Purification and recovery of NaCl from epoxy resin waste salt through an integrated process based on aqueous two-phase systems (ATPS)[J]. Journal of Environmental Chemical Engineering, 2024, 12(3): 113091. |
| [23] | ZHAO Zongwen, QIN Weining, LONG Jiang, et al. The removal of organic impurities from industrial waste salt by pyrolysis[J]. Environmental Science and Pollution Research International, 2023, 30(8): 21671-21682. |
| [24] | 王悦, 彭琳, 刘金香, 等. 石墨相氮化碳/壳聚糖复合材料对水中U(Ⅵ)的吸附性能与机制[J]. 材料工程, 2024(9): 158-168. |
| WANG Yue, PENG Lin, LIU Jinxiang, et al. Adsorption performance and mechanism of g-C3N4/CS composite for U(Ⅵ) from aqueous solution[J]. Journal of Materials Engineering, 2024(9): 158-168. | |
| [25] | 谯华, 谢丹丹, 张书豪, 等. 不同类型原料生物炭对镉吸附机理探究[J]. 环境污染与防治, 2023, 45(11): 1485-1488. |
| QIAO Hua, XIE Dandan, ZHANG Shuhao, et al. Study on the adsorption mechanism of cadmium by biochar from different types of raw materials[J]. Environmental Pollution & Control, 2023, 45(11): 1485-1488. | |
| [26] | GU Fubo, CUI Yuzhen, HAN Dongmei, et al. Atomically dispersed Pt(Ⅱ) on WO3 for highly selective sensing and catalytic oxidation of triethylamine[J]. Applied Catalysis B: Environmental, 2019, 256: 117809. |
| [27] | 李子良. 新型低共熔溶剂的构建及氨气和二氧化硫捕集性能研究[D]. 南昌: 南昌大学, 2021. |
| LI Ziliang. Construction of a new deep eutectic solvents and study on its ammonia and sulfur dioxide capture performance[D]. Nanchang: Nanchang University, 2021. | |
| [28] | ZHENG Peng, LI Yan, CHI Qiang, et al. Structural characteristics and microbial function of biofilm in membrane-aerated biofilm reactor for the biodegradation of volatile pyridine[J]. Journal of Hazardous Materials, 2022, 437: 129370. |
| [29] | 田业超, 任家丰, 宋海欧, 等. 工业吡啶废水处理技术研究进展[J]. 当代化工, 2022, 51(1): 164-168. |
| TIAN Yechao, REN Jiafeng, SONG Haiou, et al. Research progress of the treatment technology of industrial pyridine wastewater[J]. Contemporary Chemical Industry, 2022, 51(1): 164-168. | |
| [30] | GAO Qieyuan, WANG Lei, LI Zhipeng, et al. Adsorptive removal of pyridine in simulation wastewater using coke powder[J]. Processes, 2019, 7(7): 459. |
| [31] | CHEN Lingyuan, TANG Jiali, WU Suoque, et al. Selective removal of Au(Ⅲ) from wastewater by pyridine-modified chitosan[J]. Carbohydrate Polymers, 2022, 286: 119307. |
| [32] | SINGH Seema, Shang-Lien LO. Catalytic performance of hierarchical metal oxides for per-oxidative degradation of pyridine in aqueous solution[J]. Chemical Engineering Journal, 2017, 309: 753-765. |
| [33] | HE Yuting, YANG Junbo, WANG Yi, et al. Atomically dispersed dual-metal ORR catalyst with hierarchical porous structure for Zn-air batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(10): 12398-12406. |
| [34] | 吕永兴, 洪国栋, 姜维, 等. 中药渣催化热解特性与产物分布规律[J]. 广东化工, 2024, 51(4): 103-106. |
| Yongxing LYU, HONG Guodong, JIANG Wei, et al. Catalytic pyrolysis properties and product distribution patterns of herb residues[J]. Guangdong Chemical Industry, 2024, 51(4): 103-106. |
| [1] | 杜璇, 王战宏, 郑彬, 许卫, 王硕, 石鹏, 高国. 钴铁酸浸液分离及电池级磷酸铁回收技术进展[J]. 化工进展, 2025, 44(9): 5327-5338. |
| [2] | 郝清泉, 隋立华, 刘静如, 张树才. 聚氯乙烯废塑料水热脱氯技术研究进展[J]. 化工进展, 2025, 44(7): 4117-4125. |
| [3] | 范晓娅, 赵镇, 彭强. 电催化二氧化碳和硝酸根共还原合成尿素研究进展[J]. 化工进展, 2025, 44(5): 2856-2869. |
| [4] | 窦玉, 王文选, 范春雷, 马吉亮, 梁财, 陈晓平. 脱硫石膏矿化CO2制备球霰石碳酸钙[J]. 化工进展, 2025, 44(4): 2328-2337. |
| [5] | 李帅哲, 聂懿宸, PHIDSAVARD Keomeesay, 顾雯, 张伟, 刘娜, 徐高翔, 刘莹, 李兴勇, 陈玉保. 非贵金属催化生物质加氢脱氧制备烃基生物燃料的研究进展[J]. 化工进展, 2024, 43(S1): 225-242. |
| [6] | 吴泽亮, 管琦卉, 陈世霞, 王珺. 炔烃选择性加氢制烯烃反应的研究进展[J]. 化工进展, 2024, 43(8): 4366-4381. |
| [7] | 黎伟杰, 路蕾蕾, 李得科, 王春航, 张祖铭, 谭强. 锂离子电池拆解回收技术及进展[J]. 化工进展, 2024, 43(8): 4601-4613. |
| [8] | 胡锐, 李先如, 朴玮玲, 冯盼, 罗磊, 罗刚, 卫皇曌, 刘振刚, 张士成. 有机废物水热转化设备与技术研究进展[J]. 化工进展, 2024, 43(7): 3672-3691. |
| [9] | 姚乃瑜, 曹景沛, 庞新博, 赵小燕, 蔡士杰, 徐敏, 赵静平, 冯晓博, 伊凤娇. 低阶煤热解挥发分热催化重整研究进展[J]. 化工进展, 2024, 43(5): 2279-2293. |
| [10] | 孙伟吉, 刘浪, 方治余, 朱梦博, 解耿, 何伟, 高宇恒. 改性镁渣的湿法碳酸化工艺[J]. 化工进展, 2024, 43(4): 2161-2173. |
| [11] | 楚振普, 陈禹蒙, 李俊国, 孙庆轩, 刘科. 废旧锂离子电池负极石墨循环再生的研究进展[J]. 化工进展, 2024, 43(3): 1524-1534. |
| [12] | 齐亚兵, 刘子炎. 离子液体萃取分离液相中酚类物质的研究进展[J]. 化工进展, 2024, 43(10): 5765-5777. |
| [13] | 申琦, 田晓雯, 张婉晴, 孙乐汀, 郝梦扬, 于洁, 段莹莹, 刘会娥, 陈爽, 郭启麟, 范明侃. 石墨烯/三聚氰胺海绵制备及其光热水蒸发性能[J]. 化工进展, 2024, 43(10): 5671-5678. |
| [14] | 任鹏锟, 仲兆平, 杨宇轩, 张杉, 杜浩然, 李骞. 改性海泡石对污泥热解过程中重金属的控制[J]. 化工进展, 2024, 43(1): 541-550. |
| [15] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |