化工进展 ›› 2025, Vol. 44 ›› Issue (8): 4732-4740.DOI: 10.16085/j.issn.1000-6613.2025-0154
• 过程系统工程的模拟与仿真 • 上一篇
杨勇1,2(
), 张钊1, 王东亮1,2, 周怀荣1,2, 赵子豪1, 李煜坤1
收稿日期:2025-02-07
修回日期:2025-05-12
出版日期:2025-08-25
发布日期:2025-09-08
通讯作者:
杨勇
作者简介:杨勇(1986—),男,博士,副教授,研究方向为化工系统工程。E-mail:yangy@lut.edu.cn。
基金资助:
YANG Yong1,2(
), ZHANG Zhao1, WANG Dongliang1,2, ZHOU Huairong1,2, ZHAO Zihao1, LI Yukun1
Received:2025-02-07
Revised:2025-05-12
Online:2025-08-25
Published:2025-09-08
Contact:
YANG Yong
摘要:
二甲苯异构体是重要的化工中间体产品,但传统生产方法和增产技术获得的异构体含量差异较大,对二甲苯(PX)的含量可由热力学平衡组成(约23.8%)上升至90%以上,对低碳高效的分离策略提出了巨大挑战。针对不同工艺来源二甲苯异构体含量差异,重点探究模拟移动床吸附、深冷结晶、反应精馏3种分离策略的分离效率、能耗和技术经济性,对3种分离策略的关键因素进行灵敏度分析。结果表明,当异构体中PX含量由热力学平衡组成增加至90%以上时,模拟移动床分离效率先降低后增加,过程能耗、设备成本和公用工程都在显著增加,经济性逐渐变差;而反应精馏和结晶分离的分离效率逐渐升高,能耗降低、经济性增加。当二甲苯异构体中PX含量较低时,模拟移动床具有显著的技术经济性;PX含量较高时,反应精馏分离效率较高;当PX含量位于45.49%~72.57%时,结晶分离工艺具有较低的能耗和较优的技术经济性。
中图分类号:
杨勇, 张钊, 王东亮, 周怀荣, 赵子豪, 李煜坤. 二甲苯异构体不同分离策略的技术经济评价[J]. 化工进展, 2025, 44(8): 4732-4740.
YANG Yong, ZHANG Zhao, WANG Dongliang, ZHOU Huairong, ZHAO Zihao, LI Yukun. Technical-economic evaluation for different separation strategies of xylene isomers[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4732-4740.
| 类别 | 对二甲苯 | 间二甲苯 | 邻二甲苯 | 催化剂 | 参考文献 |
|---|---|---|---|---|---|
| A | 23.89 | 53.26 | 22.84 | [ | |
| B | 33.00 | 48.00 | 19.00 | ZnZrO x /4Z5 | [ |
| C | 48.00 | 26.85 | 25.15 | ZnZrO x /2Z5 | [ |
| D | 70.81 | 20.10 | 9.06 | ZnZrO x /2Z5 | [ |
| E | 81.79 | 12.26 | 5.95 | ZrCuO0.1-Z50.5(25)-Si(2) | [ |
| F | 92.09 | 3.98 | 3.93 | ZSM-5 | [ |
表1 不同工艺来源二甲苯异构体的进料组成
| 类别 | 对二甲苯 | 间二甲苯 | 邻二甲苯 | 催化剂 | 参考文献 |
|---|---|---|---|---|---|
| A | 23.89 | 53.26 | 22.84 | [ | |
| B | 33.00 | 48.00 | 19.00 | ZnZrO x /4Z5 | [ |
| C | 48.00 | 26.85 | 25.15 | ZnZrO x /2Z5 | [ |
| D | 70.81 | 20.10 | 9.06 | ZnZrO x /2Z5 | [ |
| E | 81.79 | 12.26 | 5.95 | ZrCuO0.1-Z50.5(25)-Si(2) | [ |
| F | 92.09 | 3.98 | 3.93 | ZSM-5 | [ |
| SMB结构参数 | 吸附操作条件 | 吸附模型参数 | ||
|---|---|---|---|---|
| 吸附剂参数 | 吸附平衡常数 | 最大吸附量 | ||
| HSMB=122.7cm | t=70s | ρ=876kg/m3 | KPX=1.0750 | qmPX=0.168kg/kg |
| DSMB=600cm | T=177℃ | ε=0.39 | KOX=0.2850 | qmOX=0.168kg/kg |
| 床层数分配7-9-5-3 | p=0.88MPa | dp=0.56mm | KMX=0.2645 | qmMX=0.168kg/kg |
| Pe=2000 | KPDEB=1.3125 | qmPDEB=0.138kg/kg | ||
| KL=9min-1 | ||||
表2 模拟移动床吸附操作工况及模型参数[33]
| SMB结构参数 | 吸附操作条件 | 吸附模型参数 | ||
|---|---|---|---|---|
| 吸附剂参数 | 吸附平衡常数 | 最大吸附量 | ||
| HSMB=122.7cm | t=70s | ρ=876kg/m3 | KPX=1.0750 | qmPX=0.168kg/kg |
| DSMB=600cm | T=177℃ | ε=0.39 | KOX=0.2850 | qmOX=0.168kg/kg |
| 床层数分配7-9-5-3 | p=0.88MPa | dp=0.56mm | KMX=0.2645 | qmMX=0.168kg/kg |
| Pe=2000 | KPDEB=1.3125 | qmPDEB=0.138kg/kg | ||
| KL=9min-1 | ||||
| 流股 | 模拟移动床 | 反应精馏 | 结晶 | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PDEB | S101 | PX | MX | OX | DTBB,TBB | S202 | PX | OX | TBMX | S301 | PX | MX | OX | |||
| 物流量/kmol·h-1 | PX质量分数/% | PX收率/% | 物流量/kmol·h-1 | 物流量/kmol·h-1 | 物流量/kmol·h-1 | PX质量分数/% | PX收率/% | 物流量/kmol·h-1 | 物流量/kmol·h-1 | PX质量分数/% | PX收率/% | 物流量 /kmol·h-1 | 物流量 /kmol·h-1 | |||
| A | 156.64 | 96.44 | 98.38 | 52.19 | 22.38 | 79.89 | 45.34 | 94.94 | 22.38 | 50.60 | 10.67 | 89.33 | 52.25 | 22.41 | ||
| B | 167.80 | 95.36 | 97.42 | 47.04 | 18.62 | 72.00 | 50.08 | 95.32 | 18.70 | 46.08 | 8.68 | 91.32 | 47.14 | 18.66 | ||
| C | 194.43 | 93.88 | 96.87 | 26.31 | 24.65 | 40.28 | 71.15 | 96.77 | 24.75 | 26.04 | 6.22 | 93.78 | 26.39 | 24.72 | ||
| D | 235.55 | 92.43 | 96.27 | 19.70 | 8.88 | 30.15 | 77.90 | 97.43 | 8.93 | 19.70 | 3.14 | 96.86 | 19.80 | 8.92 | ||
| E | 274.96 | 95.69 | 95.16 | 12.01 | 5.83 | 18.39 | 85.44 | 97.94 | 5.89 | 12.14 | 2.57 | 97.43 | 12.09 | 5.87 | ||
| F | 310.32 | 98.26 | 94.22 | 3.90 | 3.85 | 5.97 | 94.46 | 98.38 | 3.92 | 3.94 | 0.09 | 99.91 | 3.93 | 3.88 | ||
表3 不同进料组成的产品纯度和收率
| 流股 | 模拟移动床 | 反应精馏 | 结晶 | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PDEB | S101 | PX | MX | OX | DTBB,TBB | S202 | PX | OX | TBMX | S301 | PX | MX | OX | |||
| 物流量/kmol·h-1 | PX质量分数/% | PX收率/% | 物流量/kmol·h-1 | 物流量/kmol·h-1 | 物流量/kmol·h-1 | PX质量分数/% | PX收率/% | 物流量/kmol·h-1 | 物流量/kmol·h-1 | PX质量分数/% | PX收率/% | 物流量 /kmol·h-1 | 物流量 /kmol·h-1 | |||
| A | 156.64 | 96.44 | 98.38 | 52.19 | 22.38 | 79.89 | 45.34 | 94.94 | 22.38 | 50.60 | 10.67 | 89.33 | 52.25 | 22.41 | ||
| B | 167.80 | 95.36 | 97.42 | 47.04 | 18.62 | 72.00 | 50.08 | 95.32 | 18.70 | 46.08 | 8.68 | 91.32 | 47.14 | 18.66 | ||
| C | 194.43 | 93.88 | 96.87 | 26.31 | 24.65 | 40.28 | 71.15 | 96.77 | 24.75 | 26.04 | 6.22 | 93.78 | 26.39 | 24.72 | ||
| D | 235.55 | 92.43 | 96.27 | 19.70 | 8.88 | 30.15 | 77.90 | 97.43 | 8.93 | 19.70 | 3.14 | 96.86 | 19.80 | 8.92 | ||
| E | 274.96 | 95.69 | 95.16 | 12.01 | 5.83 | 18.39 | 85.44 | 97.94 | 5.89 | 12.14 | 2.57 | 97.43 | 12.09 | 5.87 | ||
| F | 310.32 | 98.26 | 94.22 | 3.90 | 3.85 | 5.97 | 94.46 | 98.38 | 3.92 | 3.94 | 0.09 | 99.91 | 3.93 | 3.88 | ||
| 参数 | 模拟移动床 | |||||||
|---|---|---|---|---|---|---|---|---|
| 流股 | FEED | PDEB | S101 | S102 | S103 | PX | MX | OX |
| 温度/℃ | 150.00 | 25.00 | 138.00 | 138.00 | 153.00 | 132.00 | 139.00 | 174.00 |
| 压力/MPa | 0.30 | 0.10 | 0.20 | 0.20 | 0.15 | 0.15 | 0.12 | 0.15 |
| 摩尔流量/kmol·h-1 | 100.00 | 235.55 | 254.43 | 81.10 | 29.54 | 66.05 | 20.41 | 9.13 |
| 组分流量/kmol·h-1 | ||||||||
| PX | 70.81 | 0 | 69.86 | 0.95 | 0.80 | 65.85 | 0.71 | 0.09 |
| MX | 20.10 | 0 | 0.24 | 19.86 | 19.86 | 0.20 | 19.70 | 0.16 |
| OX | 9.06 | 0 | 0.16 | 8.90 | 8.88 | 0 | 0 | 8.88 |
| PDEB | 0 | 235.55 | 184.17 | 51.39 | 0 | 0 | 0 | 0 |
| 参数 | 反应精馏 | |||||||
| 流股 | FEED | DTBB,TBB | S201 | S202 | B | PX | TBMX | OX |
| 温度/℃ | 150.00 | 150.00 | 132.00 | 97.00 | 120.00 | 184.00 | 188.00 | 178.00 |
| 压力/MPa | 0.30 | 0.20 | 0.25 | 0.20 | 0.18 | 0.20 | 0.25 | 0.30 |
| 摩尔流量/kmol·h-1 | 100.00 | 30.15 | 90.71 | 86.43 | 15.87 | 70.31 | 19.42 | 9.26 |
| 组分流量/kmol·h-1 | ||||||||
| PX | 70.81 | 0 | 70.56 | 70.56 | 0 | 70.31 | 0 | 0.25 |
| MX | 20.10 | 0 | 20.02 | 0 | 0 | 0 | 0 | 0.08 |
| OX | 9.06 | 0 | 0.13 | 0 | 0 | 0 | 0 | 8.93 |
| DTBB | 0 | 20.10 | 0 | 0 | 0 | 0 | 0 | 0 |
| TBB | 0 | 10.05 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 0 | 0 | 0 | 15.87 | 15.87 | 0 | 0 | 0 |
| TBMX | 0 | 0 | 0 | 0 | 0 | 0 | 19.42 | 0 |
| 参数 | 深冷结晶 | |||||||
| 流股 | FEED | S301 | S302 | PX | MX | OX | ||
| 温度/℃ | 150.00 | -30.00 | 138.00 | -30.00 | 132.00 | 153.00 | ||
| 压力/MPa | 0.30 | 0.20 | 0.25 | 0.30 | 0.23 | 0.25 | ||
| 摩尔流量/kmol·h-1 | 100.00 | 30.97 | 30.97 | 69.00 | 21.24 | 9.73 | ||
| 组分流量/kmol·h-1 | ||||||||
| PX | 70.81 | 1.81 | 1.81 | 69.00 | 1.30 | 0.51 | ||
| MX | 20.10 | 20.10 | 20.10 | 0 | 19.80 | 0.30 | ||
| OX | 9.06 | 9.06 | 9.06 | 0 | 0.14 | 8.92 | ||
表4 D组成进料不用分离工艺的物料平衡
| 参数 | 模拟移动床 | |||||||
|---|---|---|---|---|---|---|---|---|
| 流股 | FEED | PDEB | S101 | S102 | S103 | PX | MX | OX |
| 温度/℃ | 150.00 | 25.00 | 138.00 | 138.00 | 153.00 | 132.00 | 139.00 | 174.00 |
| 压力/MPa | 0.30 | 0.10 | 0.20 | 0.20 | 0.15 | 0.15 | 0.12 | 0.15 |
| 摩尔流量/kmol·h-1 | 100.00 | 235.55 | 254.43 | 81.10 | 29.54 | 66.05 | 20.41 | 9.13 |
| 组分流量/kmol·h-1 | ||||||||
| PX | 70.81 | 0 | 69.86 | 0.95 | 0.80 | 65.85 | 0.71 | 0.09 |
| MX | 20.10 | 0 | 0.24 | 19.86 | 19.86 | 0.20 | 19.70 | 0.16 |
| OX | 9.06 | 0 | 0.16 | 8.90 | 8.88 | 0 | 0 | 8.88 |
| PDEB | 0 | 235.55 | 184.17 | 51.39 | 0 | 0 | 0 | 0 |
| 参数 | 反应精馏 | |||||||
| 流股 | FEED | DTBB,TBB | S201 | S202 | B | PX | TBMX | OX |
| 温度/℃ | 150.00 | 150.00 | 132.00 | 97.00 | 120.00 | 184.00 | 188.00 | 178.00 |
| 压力/MPa | 0.30 | 0.20 | 0.25 | 0.20 | 0.18 | 0.20 | 0.25 | 0.30 |
| 摩尔流量/kmol·h-1 | 100.00 | 30.15 | 90.71 | 86.43 | 15.87 | 70.31 | 19.42 | 9.26 |
| 组分流量/kmol·h-1 | ||||||||
| PX | 70.81 | 0 | 70.56 | 70.56 | 0 | 70.31 | 0 | 0.25 |
| MX | 20.10 | 0 | 20.02 | 0 | 0 | 0 | 0 | 0.08 |
| OX | 9.06 | 0 | 0.13 | 0 | 0 | 0 | 0 | 8.93 |
| DTBB | 0 | 20.10 | 0 | 0 | 0 | 0 | 0 | 0 |
| TBB | 0 | 10.05 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 0 | 0 | 0 | 15.87 | 15.87 | 0 | 0 | 0 |
| TBMX | 0 | 0 | 0 | 0 | 0 | 0 | 19.42 | 0 |
| 参数 | 深冷结晶 | |||||||
| 流股 | FEED | S301 | S302 | PX | MX | OX | ||
| 温度/℃ | 150.00 | -30.00 | 138.00 | -30.00 | 132.00 | 153.00 | ||
| 压力/MPa | 0.30 | 0.20 | 0.25 | 0.30 | 0.23 | 0.25 | ||
| 摩尔流量/kmol·h-1 | 100.00 | 30.97 | 30.97 | 69.00 | 21.24 | 9.73 | ||
| 组分流量/kmol·h-1 | ||||||||
| PX | 70.81 | 1.81 | 1.81 | 69.00 | 1.30 | 0.51 | ||
| MX | 20.10 | 20.10 | 20.10 | 0 | 19.80 | 0.30 | ||
| OX | 9.06 | 9.06 | 9.06 | 0 | 0.14 | 8.92 | ||
| 参数 | 公用工程 | 原料 | 产品 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 急冷水 | 低压蒸汽 | 中压蒸汽 | 工业用电 | 混合二甲苯 | DTBB/TBB | PX,MX,OX | TBMX | B | |
| 价格 | 5CNY/t | 120CNY/t | 180CNY/t | 0.38CNY/kWh | 5900CNY/t | 7700CNY/t | 7600CNY/t | 7700CNY/t | 7600CNY/t |
表5 物价
| 参数 | 公用工程 | 原料 | 产品 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 急冷水 | 低压蒸汽 | 中压蒸汽 | 工业用电 | 混合二甲苯 | DTBB/TBB | PX,MX,OX | TBMX | B | |
| 价格 | 5CNY/t | 120CNY/t | 180CNY/t | 0.38CNY/kWh | 5900CNY/t | 7700CNY/t | 7600CNY/t | 7700CNY/t | 7600CNY/t |
| [4] | MINCEVA Mirjana, GOMES Pedro Sá, MESHKO Vera, et al. Simulated moving bed reactor for isomerization and separation of p-xylene[J]. Chemical Engineering Journal, 2008, 140(1/2/3): 305-323. |
| [5] | GONÇALVES Jonathan C, FARIA Rui P V, FERREIRA Alexandre F P, et al. Optimization of a simulated moving bed unit within an existing and revamped aromatics complex with crystallization and toluene methylation units[J]. Industrial & Engineering Chemistry Research, 2020, 59(25): 11570-11581. |
| [6] | 刘莹, 郑芳, 杨启炜, 等. 二甲苯异构体吸附分离研究进展[J]. 化工学报, 2024, 75(4): 1081-1095. |
| LIU Ying, ZHENG Fang, YANG Qiwei, et al. Recent progress in adsorption and separation of xylene isomers[J]. CIESC Journal, 2024, 75(4): 1081-1095. | |
| [7] | ASHRAF Muhammad Tahir, CHEBBI Rachid, DARWISH Naif A. Process of p-xylene production by highly selective methylation of toluene[J]. Industrial & Engineering Chemistry Research, 2013, 52(38): 13730-13737. |
| [8] | SAITO Shozaburo, MICHISHITA Tsuguo, MAEDA Siro. Separation of meta- and para-xylene mixture by distillation accompanied by chemical reactions[J]. Journal of Chemical Engineering of Japan, 1971, 4(1): 37-43. |
| [9] | 张方坤, 王云龙, 徐啟蕾, 等. 一种萃取精馏分离邻/间/对二甲苯混合物的方法: CN117285405A[P]. 2023-12-26. |
| ZHANG Fangkun, Wang Yunlong, Xu Qilei, et al. A method for separating o/m/p-xylene mixture by extractive distillation: CN117285405A[P] 2023-12-26. | |
| [10] | 赵同复, 李斌, 王振龙, 等. BaX分子筛的阳离子分布及其吸附分离对二甲苯的机理[J]. 催化学报, 2005, 26(8): 655-659. |
| ZHAO Tongfu, LI Bin, WANG Zhenlong, et al. Distribution of cation in BaX zeolite and mechanism of adsorption and separation for paraxylene[J]. Chinese Journal of Catalysis, 2005, 26(8): 655-659. | |
| [11] | RASOULI Milad, YAGHOBI Nakisa, MOVASSAGHI GILANI Seyedeh Zahra, et al. Influence of monovalent alkaline metal cations on binder-free nano-zeolite X in para-xylene separation[J]. Chinese Journal of Chemical Engineering, 2015, 23(1): 64-70. |
| [12] | CHEN Weiye, YAO Tuo, LIU Jian, et al. Modeling and validation of multi-objective optimization for mixed xylene hybrid distillation/crystallization process[J]. Separation and Purification Technology, 2025, 354: 128778. |
| [13] | 杨勇, 张钊, 王东亮, 等. 基于CO2加氢耦合甲苯甲基化选择催化的PX生产工艺对比[J]. 清华大学学报(自然科学版), 2024, 64(3): 538-544. |
| YANG Yong, ZHANG Zhao, WANG Dongliang, et al. Production technology of p-xylene production by toluene methylation with selective carbon dioxide hydrogenation[J]. Journal of Tsinghua University (Science and Technology), 2024, 64(3): 538-544. | |
| [14] | 夏敦焰, 彭莉, 吴政奇, 等. MFI型分子筛膜的两段变温合成及对二甲苯异构体的分离性能[J]. 高等学校化学学报, 2020, 41(12): 2813-2821. |
| XIA Dunyan, PENG Li, WU Zhengqi, et al. Two-stage varying-temperature synthesis of MFI zeolite membrane and their separation performance for xylene isomers[J]. Chemical Journal of Chinese Universities, 2020, 41(12): 2813-2821. | |
| [15] | ZHOU Jian, LIU Zhicheng, WANG Yangdong, et al. Shape selective catalysis in methylation of toluene: Development, challenges and perspectives[J]. Frontiers of Chemical Science and Engineering, 2018, 12(1): 103-112. |
| [16] | SHARMA Poonam, SEBASTIAN Joby, GHOSH Sreetama, et al. Recent advances in hydrogenation of CO2 into hydrocarbons via methanol intermediate over heterogeneous catalysts[J]. Catalysis Science & Technology, 2021, 11(5): 1665-1697. |
| [17] | CHAKINALA Nandana, CHAKINALA Anand G. Process design strategies to produce p-xylene via toluene methylation: A review[J]. Industrial & Engineering Chemistry Research, 2021, 60(15): 5331-5351. |
| [18] | LIU Jing, YANG Yu, WEI Shunan, et al. Intensified p-xylene production process through toluene and methanol alkylation[J]. Industrial & Engineering Chemistry Research, 2018, 57(38): 12829-12841. |
| [19] | WANG Dongliang, ZHANG Junqiang, YANG Yong, et al. Process simulation for enhanced p-xylene production via aromatics complex integrated toluene methylation with low-cost methanol feedstock[J]. Chemical Engineering Research and Design, 2023, 191: 184-195. |
| [20] | SHANG Xin, ZHUO Hongying, HAN Qiao, et al. Xylene synthesis through tandem CO2 hydrogenation and toluene methylation over a composite ZnZrO zeolite catalyst[J]. Angewandte Chemie International Edition, 2023, 62(37): e202309377. |
| [21] | ZUO Jiachang, CHEN Weikun, LIU Jia, et al. Selective methylation of toluene using CO2 and H2 to para-xylene[J]. Science Advances, 2020, 6(34): eaba5433. |
| [22] | MIAO Dengyun, PAN Xiulian, JIAO Feng, et al. Selective synthesis of para-xylene and light olefins from CO2/H2 in the presence of toluene[J]. Catalysis Science & Technology, 2021, 11(13): 4521-4528. |
| [1] | BUSCA Guido. Production of gasolines and monocyclic aromatic hydrocarbons: From fossil raw materials to green processes[J]. Energies, 2021, 14(13): 4061. |
| [2] | PENG Bo, WANG Shaoyan. Separation of p-xylene and m-xylene by simulated moving bed chromatography with MIL-53(Fe) as stationary phase[J]. Journal of Chromatography A, 2022, 1673: 463091. |
| [3] | GONÇALVES Jonathan C, RODRIGUES Alírio E. Simulated moving bed reactor for p-xylene production: Adsorbent and catalyst homogeneous mixture[J]. Chemical Engineering Journal, 2014, 258: 194-202. |
| [23] | SHI Qian, GONÇALVES Jonathan C, FERREIRA Alexandre F P, et al. A review of advances in production and separation of xylene isomers[J]. Chemical Engineering and Processing: Process Intensification, 2021, 169: 108603. |
| [24] | ZHANG Peipei, TAN Li, YANG Guohui, et al. One-pass selective conversion of syngas to para-xylene[J]. Chemical Science, 2017, 8(12): 7941-7946. |
| [25] | HAN Xiaoqin, ZUO Jiachang, WEN Danlu, et al. Toluene methylation with syngas to para-xylene by bifunctional ZnZrO x -HZSM-5 catalysts[J]. Chinese Journal of Catalysis, 2022, 43(4): 1156-1164. |
| [26] | TIAN Haifeng, HE Huanhuan, JIAO Jiapeng, et al. Tandem catalysts composed of different morphology HZSM-5 and metal oxides for CO2 hydrogenation to aromatics[J]. Fuel, 2022, 314: 123119. |
| [27] | LI Wen, WANG Kuncan, HUANG Junjie, et al. M x O y -ZrO2 (M=Zn, Co, Cu) solid solutions derived from schiff base-bridged UiO-66 composites as high-performance catalysts for CO2 hydrogenation[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 33263-33272. |
| [28] | XIAO Zhikai, HUANG Hai, CAO Chenxi, et al. Designing a bifunctional ZrCuO x /HZSM-5 catalyst for selective methylation of toluene with carbon dioxide to para-xylene[J]. Fuel, 2022, 319: 123848. |
| [29] | NI Youming, CHEN Zhiyang, FU Yi, et al. Selective conversion of CO2 and H2 into aromatics[J]. Nature Communications, 2018, 9(1): 3457. |
| [30] | Mahdi ABDI-KHANGHAH, ALRASHED Abdullah A A A, HAMOULE Touba,et al. Toluene methylation to para-xylene[J]. Journal of Thermal Analysis and Calorimetry, 2018, 135(3): 1723-1732. |
| [31] | 杨明磊, 魏民, 胡蓉, 等. 二甲苯模拟移动床分离过程建模与仿真[J]. 化工学报, 2013, 64(12): 4335-4341. |
| YANG Minglei, WEI Min, HU Rong, et al. Modeling of simulated moving bed for xylene separation[J]. CIESC Journal, 2013, 64(12): 4335-4341. | |
| [32] | 张东辉, 沈圆辉, 吴丽梅, 等. 对二甲苯模拟移动床分离过程的模拟与优化[J]. 天津大学学报(自然科学与工程技术版), 2016, 49(3): 279-286. |
| ZHANG Donghui, SHEN Yuanhui, WU Limei, et al. Simulation and optimization of simulated moving bed for the separation of p-xylene[J]. Journal of Tianjin University (Science and Technology), 2016, 49(3): 279-286. | |
| [33] | WANKAT P C. Simulated moving bed cascades for ternary separations[J]. Industrial & Engineering Chemistry Research, 2001, 40(26): 6185-6193. |
| [34] | JIN Weihua, WANKAT Phillip C. Hybrid simulated moving bed processes for the purification of p‐xylene[J]. Separation Science and Technology, 2007, 42(4): 669-700. |
| [35] | Cristofer BRAVO-BRAVO, SEGOVIA-HERNÁNDEZ Juan Gabriel, Salvador HERNÁNDEZ, et al. Hybrid distillation/melt crystallization process using thermally coupled arrangements: Optimization with evolutive algorithms[J]. Chemical Engineering and Processing: Process Intensification, 2013, 67: 25-38. |
| [36] | KONG Lingxun, WU Yaqing, MARAVELIAS Christos T. Simultaneous utility and heat exchanger area targeting for integrated process synthesis and heat integration[J]. Industrial & Engineering Chemistry Research, 2017, 56(41): 11847-11859. |
| [37] | IBRAHIM Dauda, JOBSON Megan, Gonzalo GUILLÉN-GOSÁLBEZ. Optimization-based design of crude oil distillation units using rigorous simulation models[J]. Industrial & Engineering Chemistry Research, 2017, 56(23): 6728-6740. |
| [1] | 纵华健, 李英, 张香平. CO2化学转化碳酸二甲酯/乙二醇的能量集成和碳流分析[J]. 化工进展, 2024, 43(10): 5369-5380. |
| [2] | 陈乐, 种海玲, 张致慧, 何明阳, 陈群. CTAB改性Cu-BTC材料的合成及其吸附分离二甲苯异构体的性能[J]. 化工进展, 2024, 43(1): 455-464. |
| [3] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
| [4] | 韩文韬, 韩振为, 李洪, 高鑫, 李鑫钢. 乙酰丙酸乙酯的反应精馏模型及隔壁塔节能优化设计[J]. 化工进展, 2022, 41(4): 1759-1769. |
| [5] | 赖佳宁, 高鑫, 从海峰, 李洪, 李鑫钢. 丙酮缩甘油反应精馏工艺全流程模拟与优化[J]. 化工进展, 2021, 40(7): 3584-3590. |
| [6] | 王晓达, 陈宇, 王清莲, 黄智贤, 杨臣, 王红星, 邱挺. 醚化反应精馏研究进展[J]. 化工进展, 2021, 40(4): 1797-1811. |
| [7] | 王洪海, 尹依, 刘星, 魏斯文, 苏伟怡, 李春利. 载酶塑料填料的制备与优化[J]. 化工进展, 2021, 40(12): 6829-6838. |
| [8] | 王红星, 李海勇, 周庆, 张路. 隔壁反应精馏合成碳酸甲乙酯节能新工艺[J]. 化工进展, 2020, 39(S2): 66-72. |
| [9] | 陆佳伟, 孔倩, 汤吉海, 张竹修, 崔咪芬, 陈献, 乔旭. “背包式”反应精馏集成过程研究进展[J]. 化工进展, 2020, 39(12): 4940-4953. |
| [10] | 耿雪丽, 孟莹, 从海峰, 李洪, 高鑫, 李鑫钢. 聚甲氧基二甲醚合成工艺及产业化述评[J]. 化工进展, 2020, 39(12): 4993-5008. |
| [11] | 刘家琪, 刘连永, 王双瑜, 李志会, 张艳华, 丁晓墅, 张东升, 赵新强, 王延吉. 酮肟水解反应及其羟胺产品分离的研究进展[J]. 化工进展, 2020, 39(10): 4147-4154. |
| [12] | 黄建松,许松林. 制取无水叔丁醇的精馏工艺优化和对比[J]. 化工进展, 2019, 38(11): 5181-5188. |
| [13] | 董颜箔, 何瑞宁, 牟春霞, 邹昀, 童张法. 离子液体催化反应精馏合成乙酸乙酯工艺模拟[J]. 化工进展, 2018, 37(02): 468-474. |
| [14] | 凌笑媚, 郑伟跃, 王晓达, 邱挺. 隔壁反应精馏技术进展[J]. 化工进展, 2017, 36(08): 2776-2786. |
| [15] | 李洪, 孟莹, 李鑫钢, 高鑫. 乙酸戊酯酯化反应精馏过程系统控制模拟及分析[J]. 化工进展, 2015, 34(12): 4165-4171. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |