化工进展 ›› 2025, Vol. 44 ›› Issue (10): 5859-5870.DOI: 10.16085/j.issn.1000-6613.2025-0199
• 材料科学与技术 • 上一篇
收稿日期:2025-02-12
修回日期:2025-04-15
出版日期:2025-10-25
发布日期:2025-11-10
通讯作者:
刘剑
作者简介:赵文武(1984—),女,博士,教授,研究方向为光催化与发光材料。E-mail:zww995@163.com。
基金资助:
ZHAO Wenwu(
), LIU Jinqiang, ZHOU Haijing, LIU Jian(
), HAO Bin
Received:2025-02-12
Revised:2025-04-15
Online:2025-10-25
Published:2025-11-10
Contact:
LIU Jian
摘要:
污水中的四环素(TC)、诺氟沙星(NOR)等药物类分子对生物体具有较大危害性,采用光催化技术处理有机污染物具有节能环保等潜在优势。通过水热法制备了两种层状Bi2WO6光催化剂,并利用X射线粉末衍射、扫描电子显微镜、X射线光电子能谱等技术对光催化剂的组成、结构和形貌进行表征。结果表明:Bi2WO6-1是由多层纳米片构成,而Bi2WO6-2为单层四方形片层形成的架状结构。与Bi2WO6-1相比,Bi2WO6-2单层的纳米片结构使其具有更大的比表面积、更小的带隙宽度以及更高的氧空位含量。在光催化降解实验中,Bi2WO6-2对TC和NOR表现出良好的吸附和光催化降解活性。在最优反应条件下,Bi2WO6-2对TC的降解率可达85.5%,反应速率常数是0.0156min-1。结合载流子有效质量计算,得知Bi2WO6结构中氧空位的存在改变了其电子结构性质,使其具有更小的me*和mh*值,以及更大的mh*/me*比值(1.81),有利于增大其光生载流子的分离效率。因此,Bi2WO6-2具有较高光催化活性推测是由于单层Bi2WO6纳米片结构和氧空位的协同作用,这不仅增加了可见光吸收强度,缩小了带隙宽度,增加了活性位点,更显著提高了光生载流子的分离效率。
中图分类号:
赵文武, 刘进强, 周海静, 刘剑, 郝斌. 层状Bi2WO6的合成及氧空位在光降解四环素中的作用机理[J]. 化工进展, 2025, 44(10): 5859-5870.
ZHAO Wenwu, LIU Jinqiang, ZHOU Haijing, LIU Jian, HAO Bin. Synthesis of layered Bi2WO6 and mechanism of oxygen vacancy in photodegradation of TC[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5859-5870.
| 模型 | mh*(me) | me*(me) | mh*/me* |
|---|---|---|---|
| Bi2WO6 | 1.61 | 0.95 | 1.69 |
| Bi2WO6-VO | 1.32 | 0.73 | 1.81 |
表1 Bi2WO6和Bi2WO6-VO模型的载流子有效质量
| 模型 | mh*(me) | me*(me) | mh*/me* |
|---|---|---|---|
| Bi2WO6 | 1.61 | 0.95 | 1.69 |
| Bi2WO6-VO | 1.32 | 0.73 | 1.81 |
| [1] | 杨沂嫡, 梁永兵, 李君文, 等. 我国生活饮用水抗生素耐药基因污染现状及其检测技术研究进展[J]. 中国公共卫生, 2021, 37(10): 1575-1579. |
| YANG Yidi, LIANG Yongbing, LI Junwen, et al. Progress in researches on contamination of antibiotic resistance genes in drinking water and its detection techniques in China[J]. Chinese Journal of Public Health, 2021, 37(10): 1575-1579. | |
| [2] | Chuen Xian LOW, TAN Loh Teng-Hern, MUTALIB Nurul-Syakima Ab, et al. Unveiling the impact of antibiotics and alternative methods for animal husbandry: A review[J]. Antibiotics, 2021, 10(5): 578. |
| [3] | PAN Jingjing, WANG Lijing, SHI Yuxing, et al. Construction of nanodiamonds/UiO-66-NH2 heterojunction for boosted visible-light photocatalytic degradation of antibiotics[J]. Separation and Purification Technology, 2022, 284: 120270. |
| [4] | 水博阳, 宋小三, 范文江. 光催化技术在水处理中的研究进展及挑战[J]. 化工进展, 2021, 40(S2): 356-363. |
| SHUI Boyang, SONG Xiaosan, FAN Wenjiang. Research progress and challenges of photocatalytic technology in water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 356-363. | |
| [5] | WANG Jianlong, ZHUAN Run. Degradation of antibiotics by advanced oxidation processes: An overview[J]. Science of The Total Environment, 2020, 701: 135023. |
| [6] | 罗玉, 黄斌, 金玉, 等. 污水中抗生素的处理方法研究进展[J]. 化工进展, 2014, 33(9): 2471-2477. |
| LUO Yu, HUANG Bin, JIN Yu, et al. Research progress in the degradation of antibiotics wastewater treatment[J]. Chemical Industry and Engineering Progress, 2014, 33(9): 2471-2477. | |
| [7] | LIU Wen, LI Yunyi, LIU Fuyang, et al. Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: Mechanisms, degradation pathway and DFT calculation[J]. Water Research, 2019, 151: 8-19. |
| [8] | YADAV Mohit, GARG Seema, CHANDRA Amrish, et al. Immobilization of green BiOX (X= Cl, Br and I) photocatalysts on ceramic fibers for enhanced photocatalytic degradation of recalcitrant organic pollutants and efficient regeneration process[J]. Ceramics International, 2019, 45(14): 17715-17722. |
| [9] | YUAN Xiaojie, SHEN Dongyan, ZHANG Qiao, et al. Z-scheme Bi2WO6/CuBi2O4 heterojunction mediated by interfacial electric field for efficient visible-light photocatalytic degradation of tetracycline[J]. Chemical Engineering Journal, 2019, 369: 292-301. |
| [10] | LI Dong, JIA Jialin, ZHENG Tong, et al. Construction and characterization of visible light active Pd nano-crystallite decorated and C-N-S-co-doped TiO2 nanosheet array photoelectrode for enhanced photocatalytic degradation of acetylsalicylic acid[J]. Applied Catalysis B: Environmental, 2016, 188: 259-271. |
| [11] | LE MINH TRI Nguyen, KIM Jitae, GIANG Bach Long, et al. Ag-doped graphitic carbon nitride photocatalyst with remarkably enhanced photocatalytic activity towards antibiotic in hospital wastewater under solar light[J]. Journal of Industrial and Engineering Chemistry, 2019, 80: 597-605. |
| [12] | ZHONG Xin, LIU Yuxin, HOU Tao, et al. Effect of Bi2WO6 nanoflowers on the U(Ⅵ) removal from water: Roles of adsorption and photoreduction[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107170. |
| [13] | CHANG Chi-Jung, CHEN Jem-Kun, LIN Kuen-Song, et al. Enhanced visible-light-driven photocatalytic degradation by metal wire-mesh supported Ag/flower-like Bi2WO6 photocatalysts[J]. Journal of Alloys and Compounds, 2020, 813: 152186. |
| [14] | WU Chung-Hsin, Syuan-Ru JHU. Synthesis of Ag3VO4/Bi2WO6 heterojunction photocatalyst with enhanced photocatalytic activity under visible light irradiation by hydrothermal methods[J]. Desalination and Water Treatment, 2022, 276: 224-236. |
| [15] | SONG Ningning, LIU Yuzhi, LI Chenyang, et al. Mechanism of excellent photocatalytic reduction for aqueous Cr(Ⅵ) by a direct Z-scheme Fe3+-Bi2WO6/PPy: A significant contribution of energy band structure and electron transfer regulation[J]. Applied Surface Science, 2024, 653: 159424. |
| [16] | FAN Hongxia, LIU Tao, ZHEN Liangfen, et al. Evaluating the role of oxygen vacancies in CO2 photothermal catalytic reduction to methanol over 2D Bi2WO6 [J]. Science China Materials, 2025, 68(2): 464-471. |
| [17] | FENG Zhaolu, GUO Fangqin, ZHANG Yawen, et al. Oxygen vacancies rich CeO2 supported Ru catalyst for efficient hydrogenation of N-ethylcarbazole at mild temperature[J]. Applied Catalysis B: Environment and Energy, 2025, 366: 125059. |
| [18] | TIAN Jiantao, KOU Chunyan, ZHANG Guanxu, et al. Surface hydroxyl synergistic oxygen vacancy to activate peroxydisulfate for enhancing the photocatalytic performance of Fe-ZnO/PEG-BiOCl: Catalytic and mechanistic study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2025, 709: 136083. |
| [19] | HUANG Yongchao, LI Kunshan, LI Siqi, et al. Ultrathin Bi2MoO6 nanosheets for photocatalysis: Performance enhancement by atomic interfacial engineering[J]. ChemistrySelect, 2018, 3(26): 7423-7428. |
| [20] | Vincent MICHAUD-RIOUX, ZHANG Lei, GUO Hong. RESCU: A real space electronic structure method[J]. Journal of Computational Physics, 2016, 307: 593-613. |
| [21] | WU Jinxiong, YUAN Hongtao, MENG Mengmeng, et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se[J]. Nature Nanotechnology, 2017, 12(6): 530-534. |
| [22] | JU Lin, BIE Mei, TANG Xiao, et al. Janus WSSe Monolayer: An Excellent Photocatalyst for Overall Water Splitting[J]. ACS Applied Materials & Interfaces, 2020, 12(26): 29335-29343. |
| [23] | SUN Dong, LE Yao, JIANG Chuanjia, et al. Ultrathin Bi2WO6 nanosheet decorated with Pt nanoparticles for efficient formaldehyde removal at room temperature[J]. Applied Surface Science, 2018, 441: 429-437. |
| [24] | CUI Wen, CHEN Lvcun, LI Jieyuan, et al. Ba-vacancy induces semiconductor-like photocatalysis on insulator BaSO4 [J]. Applied Catalysis B: Environmental, 2019, 253: 293-299. |
| [25] | WANG Hong, SUN Yanjuan, JIANG Guangming, et al. Unraveling the mechanisms of visible light photocatalytic NO purification on earth-abundant insulator-based core-shell heterojunctions[J]. Environmental Science & Technology, 2018, 52(3): 1479-1487. |
| [26] | ZHU Gangqiang, HOJAMBERDIEV Mirabbos, KATSUMATA Ken-ichi, et al. Heterostructured Fe3O4/Bi2O2CO3 photocatalyst: Synthesis, characterization and application in recyclable photodegradation of organic dyes under visible light irradiation[J]. Materials Chemistry and Physics, 2013, 142(1): 95-105. |
| [27] | SHANG Yaru, CUI Yongping, SHI Ruixia, et al. Regenerated WO2.72 nanowires with superb fast and selective adsorption for cationic dye: Kinetics, isotherm, thermodynamics, mechanism[J]. Journal of Hazardous Materials, 2019, 379: 120834. |
| [28] | YANG Xudong, LI Fan, LIU Wen, et al. Oxygen vacancy-induced spin polarization of tungsten oxide nanowires for efficient photocatalytic reduction and immobilization of uranium(Ⅵ) under simulated solar light[J]. Applied Catalysis B: Environmental, 2023, 324: 122202. |
| [29] | LI Shuguan, BAI Liqi, JI Ning, et al. Ferroelectric polarization and thin-layered structure synergistically promoting CO2 photoreduction of Bi2MoO6 [J]. Journal of Materials Chemistry A, 2020, 8(18): 9268-9277. |
| [30] | CHEN Ning, WANG Fei, LI Xu, et al. Insight into the ultrahigh electric performance of aurivillius CBTa-CBN solid solution[J]. Inorganic Chemistry, 2023, 62(18): 6993-7002. |
| [31] | SHINDE Sachin B, BHOSALE Sneha R, BIRAJDAR Nagesh B, et al. Construction of waste chalk powder into mpg-C3N4-CaSO4 as an efficient photocatalyst for dye degradation under UV-Vis light and sunlight[J]. Langmuir, 2023, 39(18): 6324-6336. |
| [32] | EROGLU Zafer, METIN Onder. Internal interactions within the complex Type-Ⅱ heterojunction of a graphitic carbon nitride/black phosphorus hybrid decorated with graphene quantum dots: implications for photooxidation performance[J]. ACS Applied Nano Materials, 2023, 6(9): 7960-7974. |
| [33] | MA Zuju, YI Zhiguo, SUN Jing, et al. Electronic and photocatalytic properties of Ag3PC4 Ⅵ (C=O, S, Se): A systemic hybrid DFT study[J]. The Journal of Physical Chemistry C, 2012, 116(47): 25074-25080. |
| [34] | LI Yuanyuan, DIAO Yue, WANG Xingya, et al. Zn4B6O13: Efficient borate photocatalyst with fast carrier separation for photodegradation of tetracycline[J]. Inorganic Chemistry, 2020, 59(18): 13136-13143. |
| [35] | SUZUKI Hajime, TAKASHIMA Takanori, TOMITA Osamu, et al. Improved photocatalytic O2 evolution on a Silleń-Aurivillius perovskite oxychloride Bi6NbWO14Cl by Rh2O3 additives and surface modifications[J]. The Journal of Physical Chemistry C, 2023, 127(17): 7965-7973. |
| [36] | MENG Chenxiaoning, ZHAO Keyan, YANG Mei, et al. Hydrothermal preparation of novel rGO-KTaO3 nanocubes with enhanced visible light photocatalytic activity[J]. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 2021, 250: 119352. |
| [37] | ZHANG Zhuzhu, JI Rui, SUN Qimeng, et al. Enhanced photocatalytic degradation of 2-chlorophenol over Z-scheme heterojunction of CdS-decorated oxygen-doped g-C3N4 under visible-light[J]. Applied Catalysis B: Environmental, 2023, 324: 122276. |
| [38] | YU Tingting, YANG Bing, ZHANG Rong, et al. Fabrication of a novel Z-S-scheme photocatalytic fuel cell with the Z-scheme TiO2/GO/g-C3N4 photoanode and S-scheme BiOAc1- x Br x /BiOBr photocathode for TC degradation[J]. Journal of Materials Science & Technology, 2024, 188: 11-26. |
| [39] | LI Xin, YU Yang, WANG Yuxin, et al. Withered magnolia-derived BCDs onto 3D flower-like Bi2WO6 for efficient photocatalytic TC degradation and CO2 reduction[J]. Journal of Alloys and Compounds, 2023, 965: 171520. |
| [1] | 王文君, 刘瑞鑫, 王军, 张庆磊, 侯立安. 浅析二氧化钛材料可见光降解室内VOCs的研究进展[J]. 化工进展, 2025, 44(9): 5351-5362. |
| [2] | 周美梅, 何家慧, 向婉婷, 尚佳欣, 魏心语, 孙蜜蜜, 邹伟, 罗平平. 电纺PVA/SiO2纳米纤维负载A-TiO2/BiOBr增强可见光催化活性[J]. 化工进展, 2025, 44(6): 3084-3092. |
| [3] | 王宇婷, 王梦祥, 李文文, 李港, 王雅君. Fe(Ⅲ)/3D氮化碳共轭体系光芬顿协同降解四环素[J]. 化工进展, 2025, 44(6): 3072-3083. |
| [4] | 肖立, 岐少鹏, 周昆, 薄雅楠, 王秀林, 姚辉超, 戴若云, 隋依言. 缺陷态TiO2-x -Au团簇复合结构设计实现高效可见光驱动CO2还原[J]. 化工进展, 2025, 44(6): 3062-3071. |
| [5] | 石秀顶, 王永全, 曾静, 苏畅, 洪俊明. 纳米管状Co-N-C活化过碳酸盐降解四环素[J]. 化工进展, 2025, 44(6): 3041-3052. |
| [6] | 张绎如, 韩东梅, 马伟芳. 铁基复合卤氧化铋磁性材料强化可见光催化处理难降解有机废水研究进展[J]. 化工进展, 2025, 44(4): 2258-2273. |
| [7] | 张佩, 高莉宁, 丁思晴, 李立, 祝锡爇, 何锐. g-C3N4/TiO2异质结光催化剂的制备及其对NO的降解性能[J]. 化工进展, 2025, 44(4): 2045-2056. |
| [8] | 张馨儿, 裴刘军, 周雨蝶, 靳凯丽, 王际平. 基于TiO2的光催化剂利用太阳能裂解水制氢研究进展[J]. 化工进展, 2025, 44(3): 1298-1308. |
| [9] | 张伊, 么秋香, 孙鸣. 天然斜发沸石基方沸石及其改性对Pb2+的吸附性能[J]. 化工进展, 2025, 44(3): 1726-1738. |
| [10] | 马晓宇, 张岩, 周阿武, 李涵冰, 杨飞华, 李建荣. MOF-on-MOF复合材料制备与光催化性能的研究进展[J]. 化工进展, 2025, 44(3): 1417-1431. |
| [11] | 方碧瑶, 邱健豪, 李伊馨, 姚建峰. 木质纤维素基生物质炭改性半导体及其光催化应用[J]. 化工进展, 2025, 44(2): 957-970. |
| [12] | 赵丽阳, 李倩, 何佩熹, 潘鸿辉, 刘艳, 刘细祥. 磷钼酸-Fe3O4球磨共改性污泥基生物炭对四环素的吸附特性[J]. 化工进展, 2025, 44(1): 583-595. |
| [13] | 蒋莉萍, 张雪乔, 钟晓娟, 魏于凡, 肖利, 郭旭晶, 羊依金. 钒渣酸浸提铁工艺优化及复合光催化剂的制备[J]. 化工进展, 2025, 44(1): 538-548. |
| [14] | 游小银, 汪楚乔, 刘才华, 彭小明. Z型CN/NGBO/BV催化剂体系的构筑及光类芬顿降解四环素性能[J]. 化工进展, 2025, 44(1): 286-296. |
| [15] | 刘炜, 张敏, 朱照琪, 王毅, 梁卫东, 孙寒雪. 黑色二氧化钛纳米材料的构筑及其应用现状[J]. 化工进展, 2025, 44(1): 341-353. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |