化工进展 ›› 2025, Vol. 44 ›› Issue (8): 4488-4499.DOI: 10.16085/j.issn.1000-6613.2025-0087
• 反应器与过程装备的模拟与仿真 • 上一篇
收稿日期:2025-01-14
修回日期:2025-03-09
出版日期:2025-08-25
发布日期:2025-09-08
通讯作者:
董鑫
作者简介:张建伟(1964—),男,教授,博士生导师,研究方向为化工过程机械。E-mail:zhangjianwei@syuct.edu.cn。
基金资助:
ZHANG Jianwei(
), YIN Miaomiao, DONG Xin(
), FENG Ying
Received:2025-01-14
Revised:2025-03-09
Online:2025-08-25
Published:2025-09-08
Contact:
DONG Xin
摘要:
为提高撞击流反应器的混合性能,设计了一种新型自激振荡撞击流反应器,并采用数值模拟方法对其内部流场动力学特征与物质混合过程进行了分析。采用剪切应力输运k-ω(SST)湍流模型模拟了喷嘴内流体流动模式及撞击流反应器内流型分布,考察了雷诺数对射流振荡频率及反应器混合性能的影响。研究结果表明:喷嘴出口射流的振荡是由喷嘴腔室内循环泡的重复生长过程控制,反应器内流场分布受两侧射流偏转角度影响。射流振荡频率随着雷诺数的增大而增加,高频振荡使得两股流体的剪切和径向运动速度加快,雷诺数为30000,混合时间为50s时,反应器出口混合强度达到0.962。本研究拓展了基于振荡射流的撞击流动力学理论体系,为高效反应器设计提供了新思路。
中图分类号:
张建伟, 阴苗苗, 董鑫, 冯颖. 基于振荡射流的撞击流反应器混合特性数值模拟[J]. 化工进展, 2025, 44(8): 4488-4499.
ZHANG Jianwei, YIN Miaomiao, DONG Xin, FENG Ying. Numerical simulation of mixing characteristics in an impinging stream reactor based on oscillating jets[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4488-4499.
| 网格数量 | 左侧射流振荡频率/Hz | 右侧射流振荡频率/Hz |
|---|---|---|
| 506326 | 4.5192 | 4.5315 |
| 975659 | 4.5793 | 4.6248 |
| 1266845 | 4.6325 | 4.6725 |
| 1464181 | 4.6349 | 4.6756 |
表1 不同网格数模型左右两侧射流振荡频率
| 网格数量 | 左侧射流振荡频率/Hz | 右侧射流振荡频率/Hz |
|---|---|---|
| 506326 | 4.5192 | 4.5315 |
| 975659 | 4.5793 | 4.6248 |
| 1266845 | 4.6325 | 4.6725 |
| 1464181 | 4.6349 | 4.6756 |
| 雷诺数Re | 左侧射流振荡频率/Hz | 右侧射流振荡频率/Hz |
|---|---|---|
| 10000 | 2.6499 | 2.6499 |
| 20000 | 4.6325 | 4.6725 |
| 30000 | 6.7877 | 6.8476 |
表2 不同雷诺数下撞击流反应器两侧射流振荡频率
| 雷诺数Re | 左侧射流振荡频率/Hz | 右侧射流振荡频率/Hz |
|---|---|---|
| 10000 | 2.6499 | 2.6499 |
| 20000 | 4.6325 | 4.6725 |
| 30000 | 6.7877 | 6.8476 |
| [1] | 张经纬. 撞击流反应器内复杂流动模式及混合机理[D]. 上海: 华东理工大学, 2020. |
| ZHANG Jingwei. Complex flow regime and mixing mechanism in impinging jets reactors[D]. Shanghai: East China University of Science and Technology, 2020. | |
| [2] | 张建伟, 安丰元, 董鑫, 等. 基于阶跃射流的撞击流反应器流场动态特性分析[J]. 化工学报, 2022, 73(2): 622-633. |
| ZHANG Jianwei, AN Fengyuan, DONG Xin, et al. Analysis of dynamic characteristics of flow field in impinging stream reactor based on step jet[J]. CIESC Journal, 2022, 73(2): 622-633. | |
| [3] | PARHAM Kiyan, ESMAEILZADEH Esmaeil, ATIKOL Ugur, et al. A numerical study of turbulent opposed impinging jets issuing from triangular nozzles with different geometries[J]. Heat and Mass Transfer, 2011, 47(4): 427-437. |
| [4] | FONTE Cláudio P, Ashar SULTAN M, SANTOS Ricardo J, et al. Flow imbalance and Reynolds number impact on mixing in confined impinging jets[J]. Chemical Engineering Journal, 2015, 260: 316-330. |
| [5] | LIU Xueqing, YUE Song, LU Luyi, et al. Experimental and numerical studies on flow and turbulence characteristics of impinging stream reactors with dynamic inlet velocity variation[J]. Energies, 2018, 11(7): 1717. |
| [6] | HENRI Coanda. Device for deflecting a stream of elastic fluid projected into an elastic fluid: US2052869[P]. 1936-09-01. |
| [7] | 王士奇. 流体振荡器: 一种有前途的非稳态激励器[J]. 航空动力, 2022(1): 18-21. |
| WANG Shiqi. Fluidic oscillator: A promising unsteady actuator[J]. Aerospace Power, 2022(1): 18-21. | |
| [8] | GREENBLATT David, WHALEN Edward A, WYGNANSKI Israel J. Introduction to the flow control virtual collection[J]. AIAA Journal, 2019, 57(8): 3111-3114. |
| [9] | LUO Xiaochen, SUN Bo, WANG Xiang’ang. Experimental investigation on a cavity-step-actuated supersonic oscillating jet[J]. Chinese Journal of Aeronautics, 2017, 30(1): 274-281. |
| [10] | RAMAN Ganesh, RAGHU Surya, BENCIC Timothy. Cavity resonance suppression using miniature fluidic oscillators[C]//5th AIAA/CEAS Aeroacoustics Conference and Exhibit. Bellevue, WA, USA, 1999: 1900. |
| [11] | CERRETELLI CIRO, KIRTLEY KEVIN. Boundary layer separation control with fluidic oscillators[C]//ASME Turbo Expo 2006: Power for Land, Sea, and Air. Barcelona, Spain, 2008: 29-38. |
| [12] | SCHMIDT H J, WOSZIDLO R, NAYERI C N, et al. Erratum to: Separation control with fluidic oscillators in water[J]. Experiments in Fluids, 2017, 58(10): 135. |
| [13] | KARA Kursat, KIM Daegyoum, MORRIS Philip J. Flow-separation control using sweeping jet actuator[J]. AIAA Journal, 2018, 56(11): 4604-4613. |
| [14] | LACARELLE ARNAUD, PASCHEREIT CHRISTIAN O. Increasing the passive scalar mixing quality of jets in crossflow with fluidics actuators[C]//ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Vancouver, British Columbia, Canada, 2012: 559-566. |
| [15] | MADADKON H, TEHRANI A F, AHMADABADI M N. Experimental and numerical investigation of unsteady turbulent flow in a fluidic oscillator flow meter with derivation of characteristic diagram[J]. Modares Mechanical Engineering, 2013, 12(5): 30-42. |
| [16] | TEN J S, POVEY T. Self-excited fluidic oscillators for gas turbines cooling enhancement: Experimental and computational study[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(2): 536-547. |
| [17] | BOBUSCH B C, WOSZIDLO R, BERGADA J M, et al. Experimental study of the internal flow structures inside a fluidic oscillator[J]. Experiments in Fluids, 2013, 54(6): 1559. |
| [18] | BOBUSCH Bernhard C, WOSZIDLO Rene, Oliver KRÜGER, et al. Numerical investigations on geometric parameters affecting the oscillation properties of a fluidic oscillator[C]//21st AIAA Computational Fluid Dynamics Conference. San Diego, CA, 2013: 2709. |
| [19] | 马志明, 黄河峡, 谭慧俊. 静止外流条件下的流体振荡器流动特性研究[C]//第五届空天动力联合会议暨中国航天第三专业信息网第41届技术交流会论文集(第一册). 南京, 2020: 219-230. |
| MA Zhiming, HUANG hexia, TAN Huijun. Research on the flow characteristics of fluid oscillators under static external flow conditions[C]//Proceedings of the 5th Aerospace Power Joint Conference and the 41st Technical Exchange Conference of China Aerospace Third Professional Information Network (Volume 1). Nanjing, 2020: 219-230. | |
| [20] | OSTERMANN Florian, GODBERSEN Philipp, WOSZIDLO Rene, et al. Sweeping jet from a fluidic oscillator in crossflow[J]. Physical Review Fluids, 2017, 2(9): 090512. |
| [21] | LI Ming, LEI Zhijun, DENG Hanliu, et al. Numerical research on the jet-mixing mechanism of convergent nozzle excited by a fluidic oscillator and an air tab[J]. Energies, 2023, 16(3): 1412. |
| [22] | PANDEY Raunak Jung, KIM Kwang-Yong. Comparative analysis of flow in a fluidic oscillator using large eddy simulation and unsteady Reynolds-averaged Navier-Stokes analysis[J]. Fluid Dynamics Research, 2018, 50(6): 065515. |
| [23] | HOSSAIN Mohammad Arif, AGRICOLA Lucas, AMERI Ali, et al. Effects of curvature on the performance of sweeping jet impingement heat transfer[C]//2018 AIAA Aerospace Sciences Meeting. Kissimmee, Florida, 2018: 0243. |
| [24] | Oliver KRÜGER, BOBUSCH Bernhard C, WOSZIDLO Rene, et al. Numerical modeling and validation of the flow in a fluidic oscillator[C]//21st AIAA Computational Fluid Dynamics Conference. San Diego, CA, 2013: 3087. |
| [25] | GUYOT Daniel, PASCHEREIT Christian Oliver, RAGHU Surya. Active combustion control using a fluidic oscillator for asymmetric fuel flow modulation[J]. International Journal of Flow Control, 2009, 1(2): 155-166. |
| [26] | OSTERMANN Florian, WOSZIDLO Rene, NAYERI Christian N, et al. Phase-averaging methods for the natural flowfield of a fluidic oscillator[J]. AIAA Journal, 2015, 53(8): 2359-2368. |
| [27] | MATHUR Manikandan, HALLER George, PEACOCK Thomas, et al. Uncovering the Lagrangian skeleton of turbulence[J]. Physical Review Letters, 2007, 98(14): 144502. |
| [28] | ALLSHOUSE Michael R, PEACOCK Thomas. Lagrangian based methods for coherent structure detection[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2015, 25(9): 097617. |
| [29] | GARTH C, LI G S, TRICOCHE X, et al. Visualization of coherent structures in transient 2D flows[M]//HEGE H C, POLTHIER K, SCHEUERMANN G. Topology-Based Methods in Visualization Ⅱ. Berlin, Heidelberg: Springer, 2009: 1-13. |
| [30] | YANG Lixia, XU Feishi, CHEN Guangwen. Effective mixing in a passive oscillating micromixer with impinging jets[J]. Chemical Engineering Journal, 2024, 489: 151329. |
| [31] | WOSZIDLO Rene, OSTERMANN Florian, NAYERI C N, et al. The time-resolved natural flow field of a fluidic oscillator[J]. Experiments in Fluids, 2015, 56(6): 125. |
| [32] | TACSI Kornélia, Ádám JOÓ, Éva PUSZTAI, et al. Development of a triple impinging jet mixer for continuous antisolvent crystallization of acetylsalicylic acid reaction mixture[J]. Chemical Engineering and Processing—Process Intensification, 2021, 165: 108446. |
| [33] | GAERTLEIN Sarah, WOSZIDLO Rene, OSTERMANN Florian, et al. The time-resolved internal and external flow field properties of a fluidic oscillator[C]//52nd Aerospace Sciences Meeting. National Harbor, Maryland, 2014: 1143. |
| [34] | SEO J H, ZHU C, MITTAL R. Flow physics and frequency scaling of sweeping jet fluidic oscillators[J]. AIAA Journal, 2018, 56(6): 2208-2219. |
| [35] | 张建伟, 刘名扬, 董鑫, 等. 基于振荡射流的撞击流反应器流动及混合特性研究[J]. 流体机械, 2024, 52(5): 47-54. |
| ZHANG Jianwei, LIU Mingyang, DONG Xin, et al. Study on flow and mixing characteristics of impinging stream reactor based on oscillating jet[J]. Fluid Machinery, 2024, 52(5): 47-54. | |
| [36] | OSTERMANN Florian, WOSZIDLO Rene, Navid NAYERI C, et al. Properties of a sweeping jet emitted from a fluidic oscillator[J]. Journal of Fluid Mechanics, 2018, 857: 216-238. |
| [37] | OSTERMANN Florian, WOSZIDLO Rene, Navid NAYERI C, et al. The interaction between a spatially oscillating jet emitted by a fluidic oscillator and a cross-flow[J]. Journal of Fluid Mechanics, 2019, 863: 215-241. |
| [1] | 李卡, 夏宇轩, 吴晓琴, 易兰, 罗浩. 双层多孔介质燃烧反应器的孔隙尺度计算流体动力学模拟[J]. 化工进展, 2025, 44(8): 4381-4393. |
| [2] | 李增, 赵云鹏, 李宇慧, 柳楠, 朱春梦, 石孝刚, 高金森, 蓝兴英. 基于CFD模拟的催化裂化沉降器跑剂异常诊断[J]. 化工进展, 2025, 44(8): 4430-4442. |
| [3] | 王兆霖, 张志刚, 周静, 高琛, 彭克臣, 姜敏迪, 奚溪, 徐胜利, 刘红. Gyroid三周期极小曲面换热构件流动换热特性[J]. 化工进展, 2025, 44(8): 4454-4462. |
| [4] | 张若琛, 王家瑞, 王斯民, 张早校. 微米级湿颗粒的动态碰撞行为及能量耗散机制[J]. 化工进展, 2025, 44(7): 3718-3726. |
| [5] | 杨心柳, 刘强, 曹倩, 崔岳铭, 方朝合. 储层渗流对单地热井同轴换热器取热特性的影响[J]. 化工进展, 2025, 44(7): 3860-3868. |
| [6] | 周鹏辉, 曾琳, 代黎, 冯小波, 倪笛. 响应面法和熵权法对离心风机的多目标性能优化[J]. 化工进展, 2025, 44(6): 3271-3279. |
| [7] | 周鹏辉, 曾琳, 代黎, 李嘉乐, 陈建琦, 李剑平, 汪华林. 微旋流混合器的混合特性数值计算[J]. 化工进展, 2025, 44(6): 3280-3287. |
| [8] | 陈巨辉, 张谦, 李丹, 李魏康, 陈轲, 周欢, ZHURAVKOV Michael, LAPATSIN Siarhel, 姜文锐. 基于DEM-PPM方法的非球形颗粒流动特性[J]. 化工进展, 2025, 44(6): 3382-3392. |
| [9] | 贺逸健, 刘祥坤, 施尧, 段学志. 乙烷氧化脱氢制乙烯催化剂颗粒外形设计[J]. 化工进展, 2025, 44(6): 3497-3508. |
| [10] | 程崇律, 单聪慧, 张孟凡, WEN X Jennifer, 徐宝鹏. 氢安全建模研究进展[J]. 化工进展, 2025, 44(3): 1285-1297. |
| [11] | 李昊阳, 李洪伟, 谭建宇. 瞬态振荡加热条件下沸腾气泡运动特性[J]. 化工进展, 2025, 44(2): 735-742. |
| [12] | 陈可欣, 李熙, 常福城, 武萧衣, 娄嘉诚, 李会雄. 螺旋管内水-水蒸气两相流压降及流型转变特性[J]. 化工进展, 2025, 44(2): 613-624. |
| [13] | 黄政锋, 王恒, 洪浩, 朱国瑞. 同心圆过渡排布管束旋涡脱落特性[J]. 化工进展, 2025, 44(2): 698-705. |
| [14] | 孙建辰, 杨捷, 李军, 孙会东, 牛俊敏, 廖逸飞, 任俊颖, 商辉. 催化剂颗粒排列方式对微波加热效果的影响[J]. 化工进展, 2025, 44(1): 57-65. |
| [15] | 于海, 栾智勇, 姬宜朋, 安申法, 陈家庆, 司政, 任强, 孙丰旭, 宋泽润. 动态水力旋流器内短路流流量的计算方法及影响分析[J]. 化工进展, 2025, 44(1): 135-144. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |