化工进展 ›› 2025, Vol. 44 ›› Issue (7): 4101-4116.DOI: 10.16085/j.issn.1000-6613.2024-0801
• 资源与环境化工 • 上一篇
赵保华1(
), 刘晓娜2, 胡彦云3, 贾天聪1, 谢强2, 贺燕2, 马相帅4, 马双忱2(
)
收稿日期:2024-05-13
修回日期:2024-07-19
出版日期:2025-07-25
发布日期:2025-08-04
通讯作者:
马双忱
作者简介:赵保华(1979—),男,高级工程师,研究方向为火力发电厂给排水设计及技术管理。E-mail:zhaobh@chec.com.cn。
基金资助:
ZHAO Baohua1(
), LIU Xiaona2, HU Yanyun3, JIA Tiancong1, XIE Qiang2, HE Yan2, MA Xiangshuai4, MA Shuangchen2(
)
Received:2024-05-13
Revised:2024-07-19
Online:2025-07-25
Published:2025-08-04
Contact:
MA Shuangchen
摘要:
近年来,传统电吸附(capacitive deionization,CDI)这一新型电化学技术以其节能、无污染等优势发展迅速,这种技术主要利用电极吸附水中的离子,通过施加电压来实现水的净化。但传统电吸附(CDI)存在需要倒极、吸附效果差、脱附不彻底等问题。为解决这些问题,流动电极电容去离子(flow electrode capacitance deion,FCDI)技术应运而生。FCDI在传统CDI的基础上引入流动电极和离子交换膜,液态电极在装置内连续运行、无须脱附的特点,解决了倒极脱附的控制与脱附不彻底等问题。此外,离子交换膜的应用进一步提高了离子的迁移效率,大大提升了电吸附的工作效率。本文介绍了传统CDI和FCDI技术工作原理,对比了各自技术特点,总结了FCDI技术在水处理领域的应用前景,并且概述了FCDI技术的最新研究成果,对水处理行业研究者提供了有价值的参考。
中图分类号:
赵保华, 刘晓娜, 胡彦云, 贾天聪, 谢强, 贺燕, 马相帅, 马双忱. 传统电吸附与流动电极电容去离子技术对比和发展趋势[J]. 化工进展, 2025, 44(7): 4101-4116.
ZHAO Baohua, LIU Xiaona, HU Yanyun, JIA Tiancong, XIE Qiang, HE Yan, MA Xiangshuai, MA Shuangchen. Comparison and development trend of traditional electroadsorption and flow electrode capacitive deion technology[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4101-4116.
| 特征 | 电吸附(CDI) | 流动电极电吸附(FCDI) |
|---|---|---|
| 原理 | 利用静态电极的表面电荷吸附水中的离子 | 利用动态流动的电极浆料中的颗粒电荷吸附水中的离子,同时还有一部分电渗析原理去除离子,以提高吸附效率 |
| 主要用途 | 去除水中的重金属离子、有机污染物等 | 主要用于大规模水处理,如工业废水处理、城市供水中的脱盐、特殊离子的去除和收集及去除重金属等 |
| 设备构成 | 包括固定电极(如活性炭电极)、电源等 | 包括流动电极浆料、FCDI装置、蠕动泵、电源等 |
| 能耗 | 相对较低,因为只涉及离子的吸附和释放 | 较传统电吸附高,因为需要额外能量来维持电极浆料的流动和循环 |
| 操作方式 | 常温下操作,过程相对简单,压力影响不大 | 操作较复杂,需要维持电极浆料的稳定流动和循环,温度和压力的控制更为关键 |
| 效率 | 受电极表面积限制,大规模处理时可能面临效率低下问题 | 由于电极材料的连续循环利用,能够在大流量处理中保持较高的去除效率 |
| 环境影响 | 环境友好,化学添加剂需求较少 | 同样环境友好,但需要考虑电极浆料的长期稳定性和可能的环境影响 |
表1 电吸附与流动电极电吸附特征对比[4,7,10]
| 特征 | 电吸附(CDI) | 流动电极电吸附(FCDI) |
|---|---|---|
| 原理 | 利用静态电极的表面电荷吸附水中的离子 | 利用动态流动的电极浆料中的颗粒电荷吸附水中的离子,同时还有一部分电渗析原理去除离子,以提高吸附效率 |
| 主要用途 | 去除水中的重金属离子、有机污染物等 | 主要用于大规模水处理,如工业废水处理、城市供水中的脱盐、特殊离子的去除和收集及去除重金属等 |
| 设备构成 | 包括固定电极(如活性炭电极)、电源等 | 包括流动电极浆料、FCDI装置、蠕动泵、电源等 |
| 能耗 | 相对较低,因为只涉及离子的吸附和释放 | 较传统电吸附高,因为需要额外能量来维持电极浆料的流动和循环 |
| 操作方式 | 常温下操作,过程相对简单,压力影响不大 | 操作较复杂,需要维持电极浆料的稳定流动和循环,温度和压力的控制更为关键 |
| 效率 | 受电极表面积限制,大规模处理时可能面临效率低下问题 | 由于电极材料的连续循环利用,能够在大流量处理中保持较高的去除效率 |
| 环境影响 | 环境友好,化学添加剂需求较少 | 同样环境友好,但需要考虑电极浆料的长期稳定性和可能的环境影响 |
| [1] | 杨群, 徐子阳, 张常勇. 电容去离子技术在选择性分离中的应用和挑战[J]. 能源环境保护, 2024, 38(1): 38-51. |
| YANG Qun, XU Ziyang, ZHANG Changyong. Applications and challenges of capacitive deionization technology in selective separation[J]. Energy Environmental Protection, 2024, 38(1): 38-51. | |
| [2] | JAMALY S, DARWISH N N, AHMED I, et al. A short review on reverse osmosis pretreatment technologies[J]. Desalination, 2014, 354: 30-38. |
| [3] | GAO Yujie, YANG Hao, ZHOU Bowen, et al. Optimal operation of new coastal power systems with seawater desalination based on grey wolf optimization[J]. Energy Reports, 2023, 9: 391-402. |
| [4] | EL-MAATY Ahmed E ABU, AWAD Mohamed M, SULTAN Gamal I, et al. Innovative approaches to solar desalination: A comprehensive review of recent research[J]. Energies, 2023, 16(9): 3957. |
| [5] | GHALAVAND Younes, HATAMIPOUR Mohammad Sadegh, RAHIMI Amir. A review on energy consumption of desalination processes[J]. Desalination and Water Treatment, 2015, 54(6): 1526-1541. |
| [6] | MURPHY G W, TUCKER J H. The demineralization behavior of carbon and chemically-modified carbon electrodes[J]. Desalination, 1966, 1(3): 247-259. |
| [7] | 王祺, 房阔, 贺聪慧, 等. 流动电极电容去离子技术综述: 研究进展与未来挑战[J]. 化工学报, 2022, 73(3): 975-989. |
| WANG Qi, FANG Kuo, HE Conghui, et al. Recent development and future challenges of flow-electrode capacitive deionization[J]. CIESC Journal, 2022, 73(3): 975-989. | |
| [8] | FANG Kuo, GONG Hui, HE Wenyan, et al. Recovering ammonia from municipal wastewater by flow-electrode capacitive deionization[J]. Chemical Engineering Journal, 2018, 348: 301-309. |
| [9] | VON HELMHOLTZ H L F. Some laws concerning the distribution of electric currents in volume conductors with applications to experiments on animal electricity[J]. Proceedings of the IEEE, 2004, 92(5): 868-870. |
| [10] | PORADA S, WEINGARTH D, HAMELERS H V M, et al. Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation[J]. Journal of Materials Chemistry A, 2014, 2(24): 9313-9321. |
| [11] | LEE Jae-Bong, PARK Kwang-Kyu, Hee-Moon EUM, et al. Desalination of a thermal power plant wastewater by membrane capacitive deionization[J]. Desalination, 2006, 196(1/2/3): 125-134. |
| [12] | JEON Sung-il, PARK Hong-ran, Jeong-gu YEO, et al. Desalination via a new membrane capacitive deionization process utilizing flow-electrodes[J]. Energy & Environmental Science, 2013, 6(5): 1471-1475. |
| [13] | NATIV Paz, BADASH Yuval, GENDEL Youri. New insights into the mechanism of flow-electrode capacitive deionization[J]. Electrochemistry Communications, 2017, 76: 24-28. |
| [14] | GENDEL Youri, ROMMERSKIRCHEN Alexandra Klara Elisabeth, DAVID Oana, et al. Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology[J]. Electrochemistry Communications, 2014, 46: 152-156. |
| [15] | AL-RAJABI Maha Mohammad, ABUMADI Farah Anwar, LAOUI Tahar, et al. Capacitive deionization for water desalination: Cost analysis, recent advances, and process optimization[J]. Journal of Water Process Engineering, 2024, 58: 104816. |
| [16] | 张若汉. 连续进水运行模式电容去离子技术研究[D]. 重庆: 重庆大学, 2017. |
| ZHANG Ruohan. Study on capacitance deionization technology in continuous water inlet operation mode[D]. Chongqing: Chongqing University, 2017. | |
| [17] | PORADA S, ZHAO R, VAN DER WAL A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8): 1388-1442. |
| [18] | 马岚. 电容去离子技术用于电厂循环冷却排污水脱盐实验研究[D]. 北京: 华北电力大学, 2021. |
| MA Lan. Experimental study on desalination of circulating cooling sewage in power plant by capacitive deionization technology[D]. Beijing: North China Electric Power University, 2021. | |
| [19] | SENOUSSI Hasna, BOUHIDEL Kamel-Eddine. Feasibility and optimisation of a batch mode capacitive deionization (BM CDI) process for textile cationic dyes (TCD) removal and recovery from industrial wastewaters[J]. Journal of Cleaner Production, 2018, 205: 721-727. |
| [20] | ZHANG Wanni, XUE Wenchao, ZHANG Chunpeng, et al. Towards long-term operation of flow-electrode capacitive deionization (FCDI): Optimization of operating parameters and regeneration of flow-electrode[J]. Heliyon, 2024, 10(2): e24940. |
| [21] | HE Calvin, MA Jinxing, ZHANG Changyong, et al. Short-circuited closed-cycle operation of flow-electrode CDI for brackish water softening[J]. Environmental Science & Technology, 2018, 52(16): 9350-9360. |
| [22] | YANG SeungCheol, KIM Hanki, JEON Sung-il, et al. Analysis of the desalting performance of flow-electrode capacitive deionization under short-circuited closed cycle operation[J]. Desalination, 2017, 424: 110-121. |
| [23] | LUO Kunyue, NIU Qiuya, ZHU Yuan, et al. Desalination behavior and performance of flow-electrode capacitive deionization under various operational modes[J]. Chemical Engineering Journal, 2020, 389: 124051. |
| [24] | 周田恬, 赖倩, 韩春晓, 等. 电容去离子脱盐装置构型的研究进展[J]. 化学通报, 2024, 87(3): 282-289. |
| ZHOU Tiantian, LAI Qian, HAN Chunxiao, et al. Research progress in capacitive deionization desalination device configuration[J]. Chemistry, 2024, 87(3): 282-289. | |
| [25] | 李丹丹, 孙文全, 李金鑫, 等. 卷式活性炭纤维电极电吸附除盐试验研究[J]. 环境工程, 2015, 33(S1): 198-200, 224. |
| LI Dandan, SUN Wenquan, LI Jinxin, et al. Study on electric adsorption desalination of volume-activated carbon fiber electrode[J]. Environmental Engineering, 2015, 33(S1): 198-200, 224. | |
| [26] | LIU Xiaona, ZHAO Baohua, HU Yanyun, et al. Enhancing capacitive deionization performance and cyclic stability of nitrogen-doped activated carbon by the electro-oxidation of anode materials[J]. Chinese Journal of Chemical Engineering, 2024, 69: 23-33. |
| [27] | 刘萌. 电吸附极板材料对电吸附性能的影响研究[D]. 兰州: 兰州交通大学, 2016. |
| LIU Meng. Study on the influence of electroadsorption plate materials on electroadsorption performance[D]. Lanzhou: Lanzhou Jiatong University, 2016. | |
| [28] | TAUK Myriam, FOLARANMI Gbenro, CRETIN Marc, et al. Recent advances in capacitive deionization: A comprehensive review on electrode materials[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111368. |
| [29] | Yiying LYU, ZHANG Lin, WANG Yongqiang. Simultaneously improving surface area and hydrophilicity of biomass activated carbon for achieving superior desalination performance in CDI[J]. Desalination and Water Treatment, 2024, 318: 100318. |
| [30] | LI Yun, LI Hongxiang, ZHOU Tiantian, et al. Platanus acerifolia (Aiton) Willd. fruit-derived nitrogen-doped porous carbon as an electrode material for the capacitive deionization of brackish water[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109914. |
| [31] | NGUYEN Thai Hoang, NGUYEN Van Vien, NGUYEN Ngan Tuan, et al. Preparation, characterization and CDI application of KOH-activated porous waste-corn-stalk-based carbon aerogel[J]. Journal of Porous Materials, 2023, 30(4): 1183-1193. |
| [32] | 卞维柏, 潘建明. 电吸附技术及吸附电极材料研究进展[J]. 化工学报, 2021, 72(1): 304-319. |
| BIAN Weibai, PAN Jianming. Research progress on electro-sorption technology and fabrication of adsorptive electrode materials[J]. CIESC Journal, 2021, 72(1): 304-319. | |
| [33] | 鲍阳. PBA基电极材料电容脱盐法选择性去除/提取水中金属离子的研究[D]. 南京: 南京信息工程大学, 2023. |
| BAO Yang. Study on selective removal/extraction of metal ions from water by capacitance desalination of PBA-based electrode materials[D]. Nanjing: Nanjing University of Information Science & Technology, 2023. | |
| [34] | KIM Yonghwan, KIM Hyunjung, KIM Kwiyong, et al. Electrosorption of cadmium ions in aqueous solutions using a copper-gallate metal-organic framework[J]. Chemosphere, 2022, 286: 131853. |
| [35] | GONG Ao, ZHAO Yubo, LIANG Bolong, et al. Stepwise hollow Prussian blue/carbon nanotubes composite as a novel electrode material for high-performance desalination[J]. Journal of Colloid and Interface Science, 2022, 605: 432-440. |
| [36] | LIANG Mingxing, WANG Lei, PRESSER Volker, et al. Combining battery-type and pseudocapacitive charge storage in Ag/Ti3C2T x MXene electrode for capturing chloride ions with high capacitance and fast ion transport[J]. Advanced Science, 2020, 7(18): 2000621. |
| [37] | SRIMUK Pattarachai, ZEIGER Marco, Nicolas JÄCKEL, et al. Enhanced performance stability of carbon/titania hybrid electrodes during capacitive deionization of oxygen saturated saline water[J]. Electrochimica Acta, 2017, 224: 314-328. |
| [38] | 俞琴, 舒纯, 王丹. 轧钢酸性废水深度处理回用技术研究[J]. 冶金动力, 2024, 43(2): 47-51. |
| YU Qin, SHU Chun, WANG Dan. Research on deep treatment and recycle technology of acidic steel rolling wastewater[J]. Metallurgical Power, 2024, 43(2): 47-51. | |
| [39] | 邹正东. 电吸附除盐技术用于梅钢再生水中试研究[J]. 冶金动力, 2022, 41(5): 73-76. |
| ZOU Zhengdong. Electrosorption desalination technology for pilot scale of reclaimed water in meisteel[J]. Metallurgical Power, 2022, 41(5): 73-76. | |
| [40] | 阿力木江·斯拉木, 史殿彬, 石文忠, 等. 电吸附技术用于处理城市污水再生水的中试研究[J]. 工业水处理, 2013, 33(4): 36-39. |
| Silamu Alimujiang, SHI Dianbin, SHI Wenzhong, et al. Pilot-scale study on electrosorption technology used for treating urban sewage reclaimed water[J]. Industrial Water Treatment, 2013, 33(4): 36-39. | |
| [41] | 曹志豪. 电吸附法污水处理回用中试研究[J]. 山东化工, 2017, 46(4): 147-149. |
| CAO Zhihao. Pilot study on wastewater treatment and reuse by electro-adsorption method[J]. Shandong Chemical Industry, 2017, 46(4): 147-149. | |
| [42] | 徐永清, 周北海, 张鸿涛, 等. 电吸附工艺用于焦化废水深度处理的中试[J]. 环境科学研究, 2014, 27(6): 663-669. |
| XU Yongqing, ZHOU Beihai, ZHANG Hongtao, et al. Pilot study on desalination of coke wastewater by electro-absorption technology[J]. Research of Environmental Sciences, 2014, 27(6): 663-669. | |
| [43] | ROMMERSKIRCHEN Alexandra, GENDEL Youri, WESSLING Matthias. Single module flow-electrode capacitive deionization for continuous water desalination[J]. Electrochemistry Communications, 2015, 60: 34-37. |
| [44] | XIE Bo, LIU Qilin, TAN Guangqun, et al. A novel four-chamber flow electrode capacitive deionization system for continuous recovery of heavy metal ions from wastewater[J]. Separation and Purification Technology, 2023, 319: 124055. |
| [45] | MA Junjun, CHEN Ruicheng, GU Jiarong, et al. Improving the energy utilization efficiency of flow electrode capacitive deionization (FCDI) with multiple series flow electrodes[J]. Separation and Purification Technology, 2024, 329: 125153. |
| [46] | MA Jinxing, MA Junjun, ZHANG Changyong, et al. Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration[J]. Water Research, 2020, 168: 115186. |
| [47] | SUN Jingyi, GARG Shikha, David WAITE T. A novel integrated flow-electrode capacitive deionization and flow cathode system for nitrate removal and ammonia generation from simulated groundwater[J]. Environmental Science & Technology, 2023, 57(39): 14726-14736. |
| [48] | LINNARTZ Christian J, ROMMERSKIRCHEN Alexandra, WESSLING Matthias, et al. Flow-electrode capacitive deionization for double displacement reactions[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 3906-3912. |
| [49] | SHIN Yong-Uk, Jihun LIM, Chanhee BOO, et al. Improving the feasibility and applicability of flow-electrode capacitive deionization (FCDI): Review of process optimization and energy efficiency[J]. Desalination, 2021, 502: 114930. |
| [50] | DOORNBUSCH G J, DYKSTRA J E, BIESHEUVEL P M, et al. Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization[J]. Journal of Materials Chemistry A, 2016, 4(10): 3642-3647. |
| [51] | CAI Yanmeng, ZHAO Xiaotong, WANG Yue, et al. Enhanced desalination performance utilizing sulfonated carbon nanotube in the flow-electrode capacitive deionization process[J]. Separation and Purification Technology, 2020, 237: 116381. |
| [52] | FREIRE Nelson H J, LINNARTZ Christian J, MONTORO Luciano A, et al. Flow electrode capacitive deionization with iron-based redox electrolyte[J]. Desalination, 2024, 578: 117313. |
| [53] | YANG Ruoying, XU Xia, TENG Jie, et al. Porous carbon flow-electrode derived from modified MOF-5 for capacitive deionization[J]. Desalination, 2024, 569: 117077. |
| [54] | ALSULTAN Abdullah, ALKHALDI Abdulrahman, ALSAIKHAN Khaled, et al. Surface-treated carbon black for durable, efficient, continuous flow electrode capacitive deionization[J]. Separation and Purification Technology, 2023, 313: 123444. |
| [55] | LUO Kunyue, CHEN Ming, XING Wenle, et al. Significantly enhanced desalination performance of flow-electrode capacitive deionization via cathodic iodide redox couple and its great potential in treatment of iodide-containing saline wastewater[J]. Chemical Engineering Journal, 2021, 421: 129905. |
| [56] | YAN Lvji, ISSAKA ALHASSAN Sikpaam, GANG Haiyin, et al. Enhancing charge transfer utilizing ternary composite slurry for high-efficient flow-electrode capacitive deionization[J]. Chemical Engineering Journal, 2023, 468: 143413. |
| [57] | CHO Younghyun, YOO Chung-Yul, LEE Seung Woo, et al. Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes[J]. Water Research, 2019, 151: 252-259. |
| [58] | LIANG Peng, SUN Xueliang, BIAN Yanhong, et al. Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode[J]. Desalination, 2017, 420: 63-69. |
| [59] | LUO Liang, HE Qiang, YI Duo, et al. Indirect charging of carbon by aqueous redox mediators contributes to the enhanced desalination performance in flow-electrode CDI[J]. Water Research, 2022, 220: 118688. |
| [60] | YANG SeungCheol, CHOI Jiyeon, Jeong-Gu YEO, et al. Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration[J]. Environmental Science & Technology, 2016, 50(11): 5892-5899. |
| [61] | TANG Kexin, YIACOUMI Sotira, LI Yuping, et al. Optimal conditions for efficient flow-electrode capacitive deionization[J]. Separation and Purification Technology, 2020, 240: 116626. |
| [62] | MYUNG Seung-Taek, HITOSHI Yashiro, SUN Yang-Kook. Electrochemical behavior and passivation of current collectors in lithium-ion batteries[J]. Journal of Materials Chemistry, 2011, 21(27): 9891-9911. |
| [63] | 忻泽堃, 王天玉, 曲久辉. 石墨毡集流体提升流动电极电容去离子脱盐性能[J]. 环境工程学报, 2023, 17(5): 1487-1495. |
| XIN Zekun, WANG Tianyu, QU Jiuhui. Enhanced desalination performance of flow electrode capacitive deionization by introduction of graphite felt as current collector[J]. Chinese Journal of Environmental Engineering, 2023, 17(5): 1487-1495. | |
| [64] | ZHANG Xinyuan, PANG Mengdie, WEI Yanan, et al. Three-dimensional titanium mesh-based flow electrode capacitive deionization for salt separation and enrichment in high salinity water[J]. Water Research, 2024, 251: 121147. |
| [65] | ZHAI Chunxiao, YUAN Jianhua, WANG Yabo, et al. Rectorite in flow-electrode capacitive deionization with three-dimensional current collector to achieve cost-effective desalination[J]. Desalination, 2024, 573: 117217. |
| [66] | ZHANG Haifeng, LI Yuna, HAN Jinglong, et al. Influence of ion exchange membrane arrangement on dual-channel flow electrode capacitive deionization: Theoretical analysis and experimentations[J]. Desalination, 2023, 548: 116288. |
| [67] | MOHSENI Mojtaba, LINNARTZ Christian J, ECHTERMEYER Sonia, et al. Flow-electrode capacitive deionization (FCDI) with microfiltration membranes for water reclamation from highly saline and dye-polluted wastewater[J]. Journal of Water Process Engineering, 2024, 59: 104954. |
| [68] | YIN Zhiwei, CHEN Lin, CAO Chuqing, et al. UiO-66-NH2 modified thin film nanocomposite (TFN) membranes for selective separation of Li+/Co2+ in a flow electrode capacitive deionization system[J]. Journal of Environmental Chemical Engineering, 2024, 12(1): 111711. |
| [69] | Niklas KÖLLER, MANKERTZ Lukas, FINGER Selina, et al. Towards pilot scale flow-electrode capacitive deionization[J]. Desalination, 2024, 572: 117096. |
| [70] | YANG SeungCheol, JEON Sung-il, KIM Hanki, et al. Stack design and operation for scaling up the capacity of flow-electrode capacitive deionization technology[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(8): 4174-4180. |
| [71] | ULLAH Zahid, YOON Nakyung, TARUS Bethwel Kipchirchir, et al. Comparison of tree-based model with deep learning model in predicting effluent pH and concentration by capacitive deionization[J]. Desalination, 2023, 558: 116614. |
| [72] | Moon SON, YOON Nakyung, PARK Sanghun, et al. An open-source deep learning model for predicting effluent concentration in capacitive deionization[J]. Science of the Total Environment, 2023, 856: 159158. |
| [73] | SALARI K, ZARAFSHAN P, KHASHEHCHI M, et al. Modeling and predicting of water production by capacitive deionization method using artificial neural networks[J]. Desalination, 2022, 540: 115992. |
| [74] | NORDSTRAND Johan, DUTTA Joydeep. Simplified prediction of ion removal in capacitive deionization of multi-ion solutions[J]. Langmuir, 2020, 36(5): 1338-1344. |
| [75] | WANG Li, ZHANG Changyong, HE Calvin, et al. Equivalent film-electrode model for flow-electrode capacitive deionization: Experimental validation and performance analysis[J]. Water Research, 2020, 181: 115917. |
| [76] | BAZANT Martin Z, CHU Kevin T, BAYLY B J. Current-voltage relations for electrochemical thin films[J]. SIAM Journal on Applied Mathematics, 2005, 65(5): 1463-1484. |
| [77] | BIESHEUVEL P M, ZHAO R, PORADA S, et al. Theory of membrane capacitive deionization including the effect of the electrode pore space[J]. Journal of Colloid and Interface Science, 2011, 360(1): 239-248. |
| [78] | SHI Chufeng, WANG Hongyang, LI Ao, et al. Process model for flow-electrode capacitive deionization for energy consumption estimation and system optimization[J]. Water Research, 2023, 230: 119517. |
| [79] | ROMMERSKIRCHEN Alexandra, ALDERS Michael, WIESNER Florian, et al. Process model for high salinity flow-electrode capacitive deionization processes with ion-exchange membranes[J]. Journal of Membrane Science, 2020, 616: 118614. |
| [80] | DYKSTRA J E, KEESMAN K J, BIESHEUVEL P M, et al. Theory of pH changes in water desalination by capacitive deionization[J]. Water Research, 2017, 119: 178-186. |
| [81] | ROMMERSKIRCHEN Alexandra, Burkhard OHS, HEPP Karl Arturo, et al. Modeling continuous flow-electrode capacitive deionization processes with ion-exchange membranes[J]. Journal of Membrane Science, 2018, 546: 188-196. |
| [82] | 郭彬彬. 锰镧双金属氢氧化物的制备及其在流动电极中除氟效能与机理研究[D]. 济南: 济南大学, 2023. |
| GUO Binbin. Preparation of Mn-La bimetallic hydroxide and its fluoride removal efficiency and mechanism in mobile electrode[D]. Jinan: University of Jinan, 2023. | |
| [83] | 江欢. 流动电极电容去离子技术处理含盐高氟地下水的研究[D]. 长沙: 湖南大学, 2022. |
| JIANG Huan. Study on the treatment of saline and fluorine-rich groundwater by capacitance deionization technology with moving electrode[D]. Changsha: Hunan University, 2022. | |
| [84] | 张静. 流动电极电容去离子技术处理低浓度含磷废水的研究[D]. 长沙: 湖南大学, 2021. |
| ZHANG Jing. Study on the treatment of low concentration phosphorus-containing wastewater using flowing electrode capacitive deionization technology [D]. Hunan University, 2021. | |
| [85] | 尹浩宇. 流动电极电容去离子高效去除水体中铜/砷机理与应用[D]. 武汉: 华中农业大学, 2023. |
| YIN Haoyu. Mechanism and application of efficient removal of copper/arsenic in water by flow electrode capacitance deionization[D]. Wuhan: Huazhong Agricultural University, 2023. | |
| [86] | 杨宏艳. 微生物燃料电池—流动性电极电容去离子性能研究[D]. 太原: 太原理工大学, 2017. |
| YANG Hongyan. Study on capacitance deionization performance of microbial fuel cell-flowing electrode[D]. Taiyuan: Taiyuan University of Technology, 2017. | |
| [87] | XU Longqian, XIE Yu, ZONG Yang, et al. Formic acid recovery from EDTA wastewater using coupled ozonation and flow-electrode capacitive deionization (Ozo/FCDI): Performance assessment at high cell voltage[J]. Separation and Purification Technology, 2021, 254: 117613. |
| [1] | 陈东健, 孙雨倩, 银凤翔. FeNi3-Fe3O4/CN催化剂的制备及其电催化析氧性能[J]. 化工进展, 2025, 44(7): 3928-3937. |
| [2] | 于宁, 王秋月, 王志才, 高子怡, 柴永明, 董斌. 双位点协同调控增强钙钛矿氧化物的水氧化活性[J]. 化工进展, 2025, 44(7): 3976-3984. |
| [3] | 毛元豪, 范会峰, SAYD Sultan, 方芙蓉, 钟琦, 余云松, 吴小梅, 张早校. 电化学介导胺再生CO2捕集技术研究进展[J]. 化工进展, 2025, 44(7): 4089-4100. |
| [4] | 孔灿, 刘雨函, 盛誉, 刘芳, 常化振. 聚苯胺增强氧化亚铜催化二氧化碳还原[J]. 化工进展, 2025, 44(6): 3144-3153. |
| [5] | 李红伟, 许涵侨, 赵燕, 刘耀宗, 滕志君, 季东, 李贵贤. 铂基催化剂电催化甲醇氧化研究进展与展望[J]. 化工进展, 2025, 44(6): 3443-3456. |
| [6] | 付元鹏, 董宪姝, 马晓敏, 樊玉萍. 液相溶胶-凝胶法LiNi1/3Co1/3Mn1/3O2三元电极材料的再生及电化学性能[J]. 化工进展, 2025, 44(6): 3561-3569. |
| [7] | 张千, 秦树敏, 杨晨曦, 杜泽宇, 唐清平, 杨周洪, 江佳骏, 冯尧, 万娟, 李伟. 群体感应调节对废水生物处理工艺影响的研究进展[J]. 化工进展, 2025, 44(6): 3630-3641. |
| [8] | 魏方熙, 刘倩楠, 吴亚品, 吴静丽, 宋文清, 唐沂珍, 江波. 零极距非对称阴极电化学除垢性能优化与机理[J]. 化工进展, 2025, 44(6): 3642-3650. |
| [9] | 范晓娅, 赵镇, 彭强. 电催化二氧化碳和硝酸根共还原合成尿素研究进展[J]. 化工进展, 2025, 44(5): 2856-2869. |
| [10] | 张舒茜, 陈佩婷, 蒲建波, 王宇作, 阮殿波, 乔志军. 进风量对硅/碳负极材料二次颗粒尺寸及电化学性能的影响[J]. 化工进展, 2025, 44(4): 2196-2201. |
| [11] | 胡家玮, 刘岩, 王聪, 刘美婧. 一种处理高硬度水的双层颗粒式药剂研发与效果分析[J]. 化工进展, 2025, 44(3): 1695-1705. |
| [12] | 谢鑫瑶, 万芬, 伏炫羽, 范雨婷, 陈令修, 李鹏. Cu-Ag纳米团簇CO2电催化还原性能和机理[J]. 化工进展, 2025, 44(3): 1387-1395. |
| [13] | 靳钰阳, 牛传峰, 刘英硕, 丁石. 石墨粉/Nafion-铅复合电极电还原草酸制乙醇酸[J]. 化工进展, 2025, 44(2): 1003-1013. |
| [14] | 刘治华, 赵红葵, 刘禧, 韩美仪, 刘婧, 房韬文, 黄普誉, 甘志权, 谢彩锋. 陆基水产养殖尾水处理技术研究进展[J]. 化工进展, 2025, 44(2): 1053-1063. |
| [15] | 张晓方, 甘汶, 纪之骄, 许明, 李初福, 何广利. 电化学氮还原合成氨电解质利用现状与调控策略[J]. 化工进展, 2025, 44(2): 809-819. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |