化工进展 ›› 2025, Vol. 44 ›› Issue (7): 4089-4100.DOI: 10.16085/j.issn.1000-6613.2024-0765
• 资源与环境化工 • 上一篇
毛元豪1(
), 范会峰1, SAYD Sultan1, 方芙蓉1, 钟琦1, 余云松1, 吴小梅1, 张早校1,2(
)
收稿日期:2024-05-09
修回日期:2024-06-26
出版日期:2025-07-25
发布日期:2025-08-04
通讯作者:
张早校
作者简介:毛元豪(1998—),男,博士研究生,研究方向为碳捕集分离技术。E-mail:myh@stu.xjtu.edu.cn。
基金资助:
MAO Yuanhao1(
), FAN Huifeng1, SAYD Sultan1, FANG Furong1, ZHONG Qi1, YU Yunsong1, WU Xiaomei1, ZHANG Zaoxiao1,2(
)
Received:2024-05-09
Revised:2024-06-26
Online:2025-07-25
Published:2025-08-04
Contact:
ZHANG Zaoxiao
摘要:
随着全球气候变化问题的日益严重,降低大气中的二氧化碳(CO2)浓度已成为急需解决的重要问题。然而,现今最具应用潜力的有机胺化学吸收工艺的大范围推广仍受到高能耗问题的阻碍。以电化学介导胺再生CO2捕集技术为代表的电化学碳捕集技术避免了高温蒸汽的使用,具有灵活、高效的特点,为低能耗碳捕集技术的发展开辟了新路径。本文介绍了电化学介导胺CO2捕集技术在反应体系选择、系统模拟计算和高效反应器设计方面的最新进展,分析其研究现状并指出其发展方向。随后进一步分析了电化学体系与碳捕集、利用与封存(CCUS)技术领域更广泛交叉应用的潜力,提出电化学CO2压缩机、电化学碳捕集还原一体化工艺流程。本综述将为推动电力驱动的低能耗碳捕集技术的研究和发展提供新的发展方向与策略。
中图分类号:
毛元豪, 范会峰, SAYD Sultan, 方芙蓉, 钟琦, 余云松, 吴小梅, 张早校. 电化学介导胺再生CO2捕集技术研究进展[J]. 化工进展, 2025, 44(7): 4089-4100.
MAO Yuanhao, FAN Huifeng, SAYD Sultan, FANG Furong, ZHONG Qi, YU Yunsong, WU Xiaomei, ZHANG Zaoxiao. Research progress in the electrochemically mediated amine regeneration CO2 capture technology[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4089-4100.
| 吸收剂 | CO2/配位金属 | 配合物型式 | lg K (25℃) | 参考文献 |
|---|---|---|---|---|
| NH3 | CO2 | 1.4 | [ | |
| Cu2+ | Cu(NH3)2+;Cu(NH3)22+;Cu(NH3)32+;Cu(NH3)42+ | 4.3,7.9, 10.9,12.82 | ||
| Zn2+ | Zn(NH3)2+;Zn(NH3)22+;Zn(NH3)32+;Zn(NH3)42+ | 2.38,4.88,7.43,9.65 | ||
| Ni2+ | Ni(NH3)2+;Ni(NH3)22+;Ni(NH3)32+;Ni(NH3)42+;Ni(NH3)52+;Ni(NH3)62+ | 2.75,4.95,6.64,7.79,8.50,8.49 | ||
| Co2+ | Co(NH3)62+ | 5.4 | ||
| Cd2+ | Cr(NH3)42+ | 10.2 | ||
| MEA | CO2 | 1.76 | [ | |
| Cu2+ | Cu(MEA)2+;Cu(MEA)22+;Cu(MEA)32+;Cu(MEA)42+ | 4.9,8.85,11.7,12.73 | [ | |
| Zn2+ | Zn(MEA)2+;Zn(MEA)22+;Zn(MEA)32+ | 3.7,6.1,9.4 | ||
| Ni2+ | Ni(MEA)2+;Ni(MEA)22+;Ni(MEA)32+ | 2.98,5.33,7.33 | ||
| Cd2+ | Cd(MEA)2+;Cd(MEA)22+;Cd(MEA)32+ | 2.77,4.09,5.6 | ||
| EDA | CO2 | 4.9 | [ | |
| Cu2+ | Cu(EDA)2+;Cu(EDA)22+ | 10.54,19.6 | [ | |
| Zn2+ | Zn(EDA)2+;Zn(EDA)22+;Zn(EDA)32+ | 5.7,10.62,13.23 | ||
| Ni2+ | Ni(EDA)2+;Ni(EDA)22+;Ni(EDA)32+ | 7.35,13.54,17.71 | ||
| Fe2+ | Fe(EDA)2+;Fe(EDA)22+;Fe(EDA)32+ | 4.34,7.66,9.72 | ||
| Co3+ | Co(EDA)33+ | 13.99 | ||
| Cr3+ | Cr(EDA)23+ | 4.86 |
表1 常用吸收剂与金属离子配合物型式及平衡常数(K)
| 吸收剂 | CO2/配位金属 | 配合物型式 | lg K (25℃) | 参考文献 |
|---|---|---|---|---|
| NH3 | CO2 | 1.4 | [ | |
| Cu2+ | Cu(NH3)2+;Cu(NH3)22+;Cu(NH3)32+;Cu(NH3)42+ | 4.3,7.9, 10.9,12.82 | ||
| Zn2+ | Zn(NH3)2+;Zn(NH3)22+;Zn(NH3)32+;Zn(NH3)42+ | 2.38,4.88,7.43,9.65 | ||
| Ni2+ | Ni(NH3)2+;Ni(NH3)22+;Ni(NH3)32+;Ni(NH3)42+;Ni(NH3)52+;Ni(NH3)62+ | 2.75,4.95,6.64,7.79,8.50,8.49 | ||
| Co2+ | Co(NH3)62+ | 5.4 | ||
| Cd2+ | Cr(NH3)42+ | 10.2 | ||
| MEA | CO2 | 1.76 | [ | |
| Cu2+ | Cu(MEA)2+;Cu(MEA)22+;Cu(MEA)32+;Cu(MEA)42+ | 4.9,8.85,11.7,12.73 | [ | |
| Zn2+ | Zn(MEA)2+;Zn(MEA)22+;Zn(MEA)32+ | 3.7,6.1,9.4 | ||
| Ni2+ | Ni(MEA)2+;Ni(MEA)22+;Ni(MEA)32+ | 2.98,5.33,7.33 | ||
| Cd2+ | Cd(MEA)2+;Cd(MEA)22+;Cd(MEA)32+ | 2.77,4.09,5.6 | ||
| EDA | CO2 | 4.9 | [ | |
| Cu2+ | Cu(EDA)2+;Cu(EDA)22+ | 10.54,19.6 | [ | |
| Zn2+ | Zn(EDA)2+;Zn(EDA)22+;Zn(EDA)32+ | 5.7,10.62,13.23 | ||
| Ni2+ | Ni(EDA)2+;Ni(EDA)22+;Ni(EDA)32+ | 7.35,13.54,17.71 | ||
| Fe2+ | Fe(EDA)2+;Fe(EDA)22+;Fe(EDA)32+ | 4.34,7.66,9.72 | ||
| Co3+ | Co(EDA)33+ | 13.99 | ||
| Cr3+ | Cr(EDA)23+ | 4.86 |
| 年份 | 反应体系 | 能耗/kJ·mol-1 CO2 | 电子利用率① | 电流密度/A·m-2 | 参考文献 |
|---|---|---|---|---|---|
| 2013 | Cu/EDA [4mol/kg (H2O)] | 94.2 | 42 | 25 | [ |
| 2014 | Cu/EDA [4mol/kg (H2O)] | <100 | 约63 | 50 | [ |
| 2017 | Cu/MEA(质量分数30%) | 57.2 | 124.76 | [ | |
| 2019 | Cu/EDA [4mol/kg (H2O)] | 52 | [ | ||
| 2019 | Cu/EDA [4mol/kg (H2O)] | 40~80 | >80 | 50 | [ |
| 2020 | Cu/EDA+AEEA [摩尔比为1,1mol/kg(H2O)] | 约36 | >50 | [ | |
| 2022 | Cu/NH3 [2mol/kg (H2O)] | 52 | 470 阳极 2500阴极 | [ | |
| 2022 | Zn/NH3 [2mol/kg (H2O)] | 14.7 | 100 | [ | |
| 2022 | Cu/MEA [7mol/kg (H2O)] | 60.67 | 200 | [ | |
| 2023 | Cu/EDA+MEA [摩尔比为1∶1,7mol/kg (H2O)] | 101.26 | 100 | [ | |
| 2023 | Cu/EDA [7mol/kg (H2O)] | 42.4 | 300 | [ | |
| 2024 | Cu/NH3 [7mol/kg (H2O)] | 12.34 | 300 | [ | |
| 2024 | Cu/DETA [1mol/kg (H2O)] | 36.67 | 100 | [ | |
| 2024 | Cu/EDA+MDEA [摩尔比为8∶2,1mol/kg (H2O)] | 37 | 100 | [ |
表2 EMAR反应体系选择及其性能参数
| 年份 | 反应体系 | 能耗/kJ·mol-1 CO2 | 电子利用率① | 电流密度/A·m-2 | 参考文献 |
|---|---|---|---|---|---|
| 2013 | Cu/EDA [4mol/kg (H2O)] | 94.2 | 42 | 25 | [ |
| 2014 | Cu/EDA [4mol/kg (H2O)] | <100 | 约63 | 50 | [ |
| 2017 | Cu/MEA(质量分数30%) | 57.2 | 124.76 | [ | |
| 2019 | Cu/EDA [4mol/kg (H2O)] | 52 | [ | ||
| 2019 | Cu/EDA [4mol/kg (H2O)] | 40~80 | >80 | 50 | [ |
| 2020 | Cu/EDA+AEEA [摩尔比为1,1mol/kg(H2O)] | 约36 | >50 | [ | |
| 2022 | Cu/NH3 [2mol/kg (H2O)] | 52 | 470 阳极 2500阴极 | [ | |
| 2022 | Zn/NH3 [2mol/kg (H2O)] | 14.7 | 100 | [ | |
| 2022 | Cu/MEA [7mol/kg (H2O)] | 60.67 | 200 | [ | |
| 2023 | Cu/EDA+MEA [摩尔比为1∶1,7mol/kg (H2O)] | 101.26 | 100 | [ | |
| 2023 | Cu/EDA [7mol/kg (H2O)] | 42.4 | 300 | [ | |
| 2024 | Cu/NH3 [7mol/kg (H2O)] | 12.34 | 300 | [ | |
| 2024 | Cu/DETA [1mol/kg (H2O)] | 36.67 | 100 | [ | |
| 2024 | Cu/EDA+MDEA [摩尔比为8∶2,1mol/kg (H2O)] | 37 | 100 | [ |
| [1] | SERVICE Robert F. Carbon capture marches toward practical use: New CO2-grabbing materials and policies could cut emissions from fossil fuel plants[J]. Science, 2021, 371(6536): 1300. |
| [2] | 符乐, 杨阳, 徐文青, 等. 新型相变有机胺吸收捕集CO2技术研究进展[J]. 化工进展, 2023, 42(4): 2068-2080. |
| FU Le, YANG Yang, XU Wenqing, et al. Research progress in CO2 capture technology using novel biphasic organic amine absorbent[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080. | |
| [3] | LEI Tianyang, WANG Daoping, YU Xiang, et al. Global iron and steel plant CO2 emissions and carbon-neutrality pathways[J]. Nature, 2023, 622(7983): 514-520. |
| [4] | ROCHELLE Gary T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948): 1652-1654. |
| [5] | 蒋倩文, 贾邵竣, 崔鹏, 等. 质子化哌嗪化学吸收CO2过程研究与分析[J]. 高校化学工程学报, 2023, 37(2): 319-325. |
| JIANG Qianwen, JIA Shaojun, CUI Peng, et al. Study on CO2 chemical absorption with protonated piperazine[J]. Journal of Chemical Engineering of Chinese Universities, 2023, 37(2): 319-325. | |
| [6] | 陆诗建, 刘苗苗, 刘玲, 等. 烟气胺法CO2捕集技术进展与未来发展趋势[J]. 化工进展, 2023, 42(1): 435-444. |
| LU Shijian, LIU Miaomiao, LIU Ling, et al. Progress and future development trend of amine method of CO2 capture technology from flue gas[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 435-444. | |
| [7] | JIANG Kaiqi, YU Hai, YU Jianglong, et al. Advancement of ammonia-based post-combustion CO2 capture technology: Process modifications[J]. Fuel Processing Technology, 2020, 210: 106544. |
| [8] | YULIA Fayza, SOFIANITA Rifka, PRAYOGO Kukuh, et al. Optimization of post combustion CO2 absorption system monoethanolamine (MEA) based for 320 MW coal-fired power plant application—Exergy and exergoenvironmental analysis[J]. Case Studies in Thermal Engineering, 2021, 26: 101093. |
| [9] | 平甜甜, 尹鑫, 董玉, 等. 有机胺非水溶液吸收CO2的动力学研究进展[J]. 化工学报, 2021, 72(8): 3968-3983. |
| PING Tiantian, YIN Xin, DONG Yu, et al. Research progress on reaction kinetics of CO2 with amines in nonaqueous solvents[J]. CIESC Journal, 2021, 72(8): 3968-3983. | |
| [10] | GAO Ge, XU Bin, GAO Xiaoyi, et al. New insights into the structure-activity relationship for CO2 capture by tertiary amines from the experimental and quantum chemical calculation perspectives[J]. Chemical Engineering Journal, 2023, 473: 145277. |
| [11] | Michael MASSEN-HANE, DIEDERICHSEN Kyle M, Alan HATTON T. Engineering redox-active electrochemically mediated carbon dioxide capture systems[J]. Nature Chemical Engineering, 2024, 1(1): 35-44. |
| [12] | RAHIMI Mohammad, KHURRAM Aliza, Alan HATTON T, et al. Electrochemical carbon capture processes for mitigation of CO2 emissions[J]. Chemical Society Reviews, 2022, 51(20): 8676-8695. |
| [13] | ABDELKAREEM Mohammad ALI, LOOTAH Maryam Abdullah, SAYED Enas Taha, et al. Fuel cells for carbon capture applications[J]. Science of The Total Environment, 2021, 769: 144243. |
| [14] | VOSKIAN Sahag, Alan HATTON T. Faradaic electro-swing reactive adsorption for CO2 capture[J]. Energy & Environmental Science, 2019, 12(12): 3530-3547. |
| [15] | ZITO Alessandra M, CLARKE Lauren E, BARLOW Jeffrey M, et al. Electrochemical carbon dioxide capture and concentration[J]. Chemical Reviews, 2023, 123(13): 8069-8098. |
| [16] | WU Xiaomei, FAN Huifeng, MAO Yuanhao, et al. Comparative performance evaluation of absorbents for the electrowinning-coupled competitive separation CO2 capture process[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(5): 2080-2091. |
| [17] | BIEL-NIELSEN Tessa Lund, Alan HATTON T, VILLADSEN Sebastian N B, et al. Electrochemistry-based CO2 removal technologies[J]. ChemSusChem, 2023, 16(11): e202202345. |
| [18] | LI Kangkang. Power generation from acid-gas pollutants treatment[J]. Chemical Engineering Journal, 2023, 462: 142232. |
| [19] | CHENG Chin-hung, LI Kangkang, YU Hai, et al. Amine-based post-combustion CO2 capture mediated by metal ions: Advancement of CO2 desorption using copper ions[J]. Applied Energy, 2018, 211: 1030-1038. |
| [20] | SMITH Robert M, MARTELL Arthur E. Critical stability constants[M]. New York: NY Springer US, 1975. |
| [21] | WANG Miao, Alan HATTON T. Flue gas CO2 capture via electrochemically mediated amine regeneration: Desorption unit design and analysis[J]. Industrial & Engineering Chemistry Research, 2020, 59(21): 10120-10129. |
| [22] | STERN Michael C, SIMEON Fritz, HERZOG Howard, et al. Post-combustion carbon dioxide capture using electrochemically mediated amine regeneration[J]. Energy & Environmental Science, 2013, 6(8): 2505-2517. |
| [23] | STERN Michael C, Alan HATTON T. Bench-scale demonstration of CO2 capture with electrochemically-mediated amine regeneration[J]. RSC Advances, 2014, 4(12): 5906-5914. |
| [24] | LIU Guang X, YU Yun S, HONG Ying T, et al. Identifying electrochemical effects in a thermal-electrochemical co-driven system for CO2 capture[J]. Physical Chemistry Chemical Physics, 2017, 19(20): 13230-13244. |
| [25] | WU Xiaomei, FAN Huifeng, MAO Yuanhao, et al. Systematic study of an energy efficient MEA-based electrochemical CO2 capture process: From mechanism to practical application[J]. Applied Energy, 2022, 327: 120014. |
| [26] | 范会峰, 吴小梅, 刘广鑫, 等. 电化学介导胺再生CO2捕集系统电化学性能研究[J]. 高校化学工程学报, 2022, 36(2): 235-241. |
| FAN Huifeng, WU Xiaomei, LIU Guangxin, et al. Electrochemical performance of electrochemically-mediated amine regeneration CO2 capture systems[J]. Journal of Chemical Engineering of Chinese Universities, 2022, 36(2): 235-241. | |
| [27] | FAN Huifeng, MAO Yuanhao, WANG Hongxia, et al. Performance comparation of MEA and EDA in electrochemically-mediated amine regeneration for CO2 capture[J]. Separation and Purification Technology, 2023, 311: 123282. |
| [28] | 徐楠, 张永春, 毛庆, 等. 有机胺电化学再生系统性能与影响因素[J]. 煤炭学报, 2023, 48(7): 2737-2747. |
| XU Nan, ZHANG Yongchun, MAO Qing, et al. Performance and influencing factors of organic amine electrochemical regeneration system[J]. Journal of China Coal Society, 2023, 48(7): 2737-2747. | |
| [29] | ZHANG Minghui, LIU Yingying, ZHU Yingming, et al. Cu(Ⅱ)-assisted CO2 absorption and desorption performances of the MMEA-H2O system[J]. Energy & Fuels, 2021, 35(11): 9509-9520. |
| [30] | MAO Yuanhao, SULTAN Sayd, FAN Huifeng, et al. Stability improvement of the advanced electrochemical CO2 capture process with high-capacity polyamine solvents[J]. Applied Energy, 2024, 369: 123597. |
| [31] | WANG Changhong, JIANG Kaiqi, YU Hai, et al. Copper electrowinning-coupled CO2 capture in solvent based post-combustion capture[J]. Applied Energy, 2022, 316: 119086. |
| [32] | WANG Changhong, JIANG Kaiqi, JONES Timothy W, et al. Electrowinning-coupled CO2 capture with energy-efficient absorbent regeneration: Towards practical application[J]. Chemical Engineering Journal, 2022, 427: 131981. |
| [33] | YU Hai, QI Guojie, WANG Shujuan, et al. Results from trialling aqueous ammonia-based post-combustion capture in a pilot plant at Munmorah Power Station: Gas purity and solid precipitation in the stripper[J]. International Journal of Greenhouse Gas Control, 2012, 10: 15-25. |
| [34] | 高凡翔, 刘阳, 张贵泉, 等. 燃煤烟气湿法协同脱硫脱碳技术研究进展[J]. 化工进展, 2024, 43(5): 2324-2342. |
| GAO Fanxiang, LIU Yang, ZHANG Guiquan, et al. Research progress of wet process synergistic desulfurization and decarbonization technology for coal-fired flue gas[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2324-2342. | |
| [35] | 雷轩邈, 王甫, 朱先会, 等. 高浓度氨水捕集二氧化碳的能耗与氨逃逸分析[J]. 高校化学工程学报, 2023, 37(5): 840-849. |
| LEI Xuanmiao, WANG Fu, ZHU Xianhui, et al. Analysis of energy consumption and ammonia escape in carbon dioxide capture using high concentration ammonia solutions[J]. Journal of Chemical Engineering of Chinese Universities, 2023, 37(5): 840-849. | |
| [36] | ABDELLAH Mohamed H, KIANI Ali, CONWAY William, et al. A mass transfer study of CO2 absorption in aqueous solutions of isomeric forms of sodium alaninate for direct air capture application[J]. Chemical Engineering Journal, 2024, 481: 148765. |
| [37] | NGWU Godwin, SULEMAN Humbul, AHMAD Faizan, et al. Passive direct air capture of carbon dioxide with an alkaline amino acid salt in water-based paints[J]. Energies, 2024, 17(2): 320. |
| [38] | 张卫风, 邓兆雄, 王秋华, 等. 化学解吸并固定甘氨酸钾富液中CO2 [J]. 中国电机工程学报, 2021, 41(11): 3676-3683. |
| ZHANG Weifeng, DENG Zhaoxiong, WANG Qiuhua, et al. Desorption and mineralization of CO2 in potassium glycinate-rich solution by chemical process[J]. Proceedings of the CSEE, 2021, 41(11): 3676-3683. | |
| [39] | LI Zelai, FAN Maohong, GAO Ge, et al. Potassium β-alanine-A promising agent for reducing carbon capture cost via electrochemically mediated amine regeneration[J]. Separation and Purification Technology, 2024, 334: 125984. |
| [40] | STERN Michael.C. Electrochemically-mediated amine regeneration for carbon dioxide separations[D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 2014. |
| [41] | RAHIMI Mohammad, ZUCCHELLI Federico, PUCCINI Monica, et al. Improved CO2 capture performance of electrochemically mediated amine regeneration processes with ionic surfactant additives[J]. ACS Applied Energy Materials, 2020, 3(11): 10823-10830. |
| [42] | RAHIMI Mohammad, DIEDERICHSEN Kyle M, OZBEK Nil, et al. An electrochemically mediated amine regeneration process with a mixed absorbent for postcombustion CO2 capture[J]. Environmental Science & Technology, 2020, 54(14): 8999-9007. |
| [43] | WU Xiaomei, MAO Yuanhao, FAN Huifeng, et al. Investigation on the performance of EDA-based blended solvents for electrochemically mediated CO2 capture[J]. Applied Energy, 2023, 349: 121656. |
| [44] | HASSAN Ahmad, REFAIE Abdelrahman, ALETA Prince, et al. Reviving the absorbent chemistry of electrochemically mediated amine regeneration for improved point source carbon capture[J]. Chemical Engineering Journal, 2024, 484: 149566. |
| [45] | 刘广鑫. 热电共驱二氧化碳捕集系统及其电化学性质的实验研究[D]. 西安: 西安交通大学, 2017. |
| LIU Guangxin. Experiment study of electrochemical characteristics of thermal-electrochemical co-drive system for carbon capture[D]. Xi’an: Xi’an Jiaotong University, 2017. | |
| [46] | WANG Miao, HARIHARAN Subrahmaniam, SHAW Ryan A, et al. Energetics of electrochemically mediated amine regeneration process for flue gas CO2 capture[J]. International Journal of Greenhouse Gas Control, 2019, 82: 48-58. |
| [47] | LI Kangkang, VAN DER POEL Philippe, CONWAY William, et al. Mechanism investigation of advanced metal-ion-mediated amine regeneration: A novel pathway to reducing CO2 reaction enthalpy in amine-based CO2 capture[J]. Environmental Science & Technology, 2018, 52(24): 14538-14546. |
| [48] | LI Kangkang, FERON Paul H M, JONES Timothy W, et al. Energy harvesting from amine-based CO2 capture: Proof-of-concept based on mono-ethanolamine[J]. Fuel, 2020, 263: 116661. |
| [49] | 谭方园, 李康康, 于海, 等. 金属离子促进乙醇胺捕集二氧化碳研究[J]. 化工学报, 2021, 72(2): 1026-1035. |
| TAN Fangyuan, LI Kangkang, YU Hai, et al. Metal ions mediated amine-based post-combustion CO2 capture[J]. CIESC Journal, 2021, 72(2): 1026-1035. | |
| [50] | FAN Huifeng, MAO Yuanhao, GAO Jifeng, et al. Combined experimental and computational study for the electrode process of electrochemically mediated amine regeneration (EMAR) CO2 capture[J]. Applied Energy, 2023, 350: 121771. |
| [51] | FAN Huifeng, MAO Yuanhao, SULTAN Sayd, et al. Optimization of the electrochemically mediated amine regeneration (EMAR) for CO2 capture through computational modeling[J]. Energy Proceedings, 2024, 38: 10888. |
| [52] | WANG Miao, SHAW Ryan, GENCER Emre, et al. Technoeconomic analysis of the electrochemically mediated amine regeneration CO2 capture process[J]. Industrial & Engineering Chemistry Research, 2020, 59(31): 14085-14095. |
| [53] | HASANZADEH Amirhossein, HOLAGH Shahriyar Ghazanfari, CHITSAZ Ata. Non-isothermal electrochemically mediated amine regeneration for CO2 capture: Performance evaluation and optimization[J]. Journal of CO2 Utilization, 2021, 54: 101758. |
| [54] | HASANZADEH Amirhossein, HOLAGH Shahriyar Ghazanfari, JANBAZVATAN Mahta, et al. Electrochemically mediated amine regeneration and proton concentration modulation processes for flue gas CO2 capture: Comparison and artificial intelligence-based optimization[J]. Journal of CO2 Utilization, 2023, 67: 102306. |
| [55] | HASANZADEH Amirhossein, MEHRARA Mahsa, IRANI Milad, et al. An innovative biomass-fueled gas turbine-ORC system equipped with electrochemically mediated amine regeneration (EMAR) for CO2 capture[J]. Journal of CO2 Utilization, 2023, 68: 102365. |
| [56] | WANG Miao, HERZOG Howard J, Alan HATTON T. CO2 capture using electrochemically mediated amine regeneration[J]. Industrial & Engineering Chemistry Research, 2020, 59(15): 7087-7096. |
| [57] | WANG Miao, RAHIMI Mohammad, KUMAR Amit, et al. Flue gas CO2 capture via electrochemically mediated amine regeneration: System design and performance[J]. Applied Energy, 2019, 255: 113879. |
| [58] | WU Xiaomei, FAN Huifeng, SHARIF Maimoona, et al. Electrochemically-mediated amine regeneration of CO2 capture: From electrochemical mechanism to bench-scale visualization study[J]. Applied Energy, 2021, 302: 117554. |
| [59] | MAHMOODI Rahele, MOFARAHI Masoud, IZADPANAH Amir Abbas, et al. Experimental and theoretical investigation of equilibrium absorption performance: Effect of alkyl amines as promoters on the CO2 loading of 2-amino-2-methyl-1-propanol at 313 K[J]. Energy & Fuels, 2019, 33(9): 8985-8997. |
| [60] | LI Kangkang, JIANG Kaiqi, JONES Timothy W, et al. CO2 regenerative battery for energy harvesting from ammonia-based post-combustion CO2 capture[J]. Applied Energy, 2019, 247: 417-425. |
| [61] | RHANDI Maha, Marine TRÉGARO, DRUART Florence, et al. Electrochemical hydrogen compression and purification versus competing technologies: Part Ⅰ. Pros and cons[J]. Chinese Journal of Catalysis, 2020, 41(5): 756-769. |
| [62] | Marine TRÉGARO, RHANDI Maha, DRUART Florence, et al. Electrochemical hydrogen compression and purification versus competing technologies: Part Ⅱ. Challenges in electrocatalysis[J]. Chinese Journal of Catalysis, 2020, 41(5): 770-782. |
| [63] | 于广欣, 纪钦洪, 徐庆虎, 等. 电化学氢纯化与压缩技术现状及在氢能中的应用[J]. 现代化工, 2023, 43(5): 6-10. |
| YU Guangxin, JI Qinhong, XU Qinghu, et al. Status and application of electrochemical hydrogen purification and compression technologies[J]. Modern Chemical Industry, 2023, 43(5): 6-10. | |
| [64] | 蔡狄. 基于燃料电池架构的电化学氨气压缩技术[D]. 厦门: 厦门大学, 2019. |
| CAI Di. The electrochemical ammonia compression technology based on the fuel cell structure[D]. Xiamen: Xiamen University, 2019. | |
| [65] | GRIGORIEV S A, SHTATNIY I G, MILLET P, et al. Description and characterization of an electrochemical hydrogen compressor/concentrator based on solid polymer electrolyte technology[J]. International Journal of Hydrogen Energy, 2011, 36(6): 4148-4155. |
| [66] | PINEDA-DELGADO J L, CHÁVEZ-RAMIREZ A U, GUTIERREZ B Cynthia K, et al. Effect of relative humidity and temperature on the performance of an electrochemical hydrogen compressor[J]. Applied Energy, 2022, 311: 118617. |
| [67] | TAO Ye, HWANG Yunho, RADERMACHER Reinhard, et al. Experimental study on electrochemical compression of ammonia and carbon dioxide for vapor compression refrigeration system[J]. International Journal of Refrigeration, 2019, 104: 180-188. |
| [68] | 黄修淞, 王淑娟, 许俊杰. CO2捕集与电化学还原利用集成系统研究综述[J]. 燃烧科学与技术, 2022, 28(6): 679-686. |
| HUANG Xiusong, WANG Shujuan, XU Junjie. Review of integrated CO2 capture and electrochemical reduction utilization system[J]. Journal of Combustion Science and Technology, 2022, 28(6): 679-686. | |
| [69] | LI Mengran, YANG Kailun, ABDINEJAD Maryam, et al. Advancing integrated CO2 electrochemical conversion with amine-based CO2 capture: A review[J]. Nanoscale, 2022, 14(33): 11892-11908. |
| [70] | 武中志, 刘静怡, 王茹洁, 等. 电化学反应性捕集CO2研究进展与挑战[J]. 能源环境保护, 2024, 38(3): 1-12. |
| WU Zhongzhi, LIU Jingyi, WANG Rujie, et al. Advances and challenges in electrocatalysis for reactive capture of CO2 [J]. Energy Environmental Protection, 2024, 38(3): 1-12. | |
| [71] | GAO Ningshengjie, Carlos QUIROZ-ARITA, DIAZ Luis A, et al. Intensified co-electrolysis process for syngas production from captured CO2 [J]. Journal of CO2 Utilization, 2021, 43: 101365. |
| [72] | CHEN Lu, LI Fengwang, ZHANG Ying, et al. Electrochemical reduction of carbon dioxide in a monoethanolamine capture medium[J]. ChemSusChem, 2017, 10(20): 4109-4118. |
| [73] | Nur HOSSAIN M, AHMAD Syed, SANTOS DA SILVA Iranaldo, et al. Electrochemical reduction of CO2 at coinage metal nanodendrites in aqueous ethanolamine[J]. Chemistry—A European Journal, 2021, 27(4): 1346-1355. |
| [74] | ABDINEJAD Maryam, MIRZA Zainab, ZHANG Xiaoan, et al. Enhanced electrocatalytic activity of primary amines for CO2 reduction using copper electrodes in aqueous solution[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(4): 1715-1720. |
| [75] | Dániel FILOTÁS, ASSERGHINE Abdelilah, NAGY Tibor, et al. Nickel coated graphite microparticle based electrodes for carbon dioxide reduction in monoethanolamine medium[J]. Electroanalysis, 2021, 33(1): 208-215. |
| [76] | Elena PÉREZ-GALLENT, VANKANI Chirag, Carlos SÁNCHEZ-MARTÍNEZ, et al. Integrating CO2 capture with electrochemical conversion using amine-based capture solvents as electrolytes[J]. Industrial & Engineering Chemistry Research, 2021, 60(11): 4269-4278. |
| [77] | LANGIE Kezia Megagita Gerby, Kyungjae TAK, KIM Changsoo, et al. Toward economical application of carbon capture and utilization technology with near-zero carbon emission[J]. Nature Communications, 2022, 13(1): 7482. |
| [78] | AHMAD Naveed, WANG Xiaoxiao, SUN Peixu, et al. Electrochemical CO2 reduction to CO facilitated by MDEA-based deep eutectic solvent in aqueous solution[J]. Renewable Energy, 2021, 177: 23-33. |
| [79] | LI Mengran, IRTEM Erdem, VAN MONTFORT Hugo-Pieter Iglesias, et al. Energy comparison of sequential and integrated CO2 capture and electrochemical conversion[J]. Nature Communications, 2022, 13(1): 5398. |
| [80] | LEVERICK Graham, BERNHARDT Elizabeth M, ISMAIL Aisyah Ilyani, et al. Uncovering the active species in amine-mediated CO2 reduction to CO on Ag[J]. ACS Catalysis, 2023, 13(18): 12322-12337. |
| [81] | KHURRAM Aliza, YAN Lifu, YIN Yuming, et al. Promoting amine-activated electrochemical CO2 conversion with alkali salts[J]. The Journal of Physical Chemistry C, 2019, 123(30): 18222-18231. |
| [82] | SULLIVAN Ian, GORYACHEV Andrey, DIGDAYA Ibadillah A, et al. Coupling electrochemical CO2 conversion with CO2 capture[J]. Nature Catalysis, 2021, 4(11): 952-958. |
| [83] | 王耀刚, 韩子姗, 高嘉辰, 等. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
| WANG Yaogang, HAN Zishan, GAO Jiachen, et al. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. | |
| [84] | 王凯, 叶丁丁, 朱恂, 等. 超亲气泡沫铜纳米线电极电化学还原CO2性能[J]. 化工进展, 2024, 43(3): 1232-1240. |
| WANG Kai, YE Dingding, ZHU Xun, et al. Performance of electrochemical reduction of CO2 by superaerophilic copper foam electrode with nanowires[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1232-1240. |
| [1] | 柳永兵, 王亚军, 谷平, 张永民, 郭怀勇, 刘凯. 浆态床反应器中多相分离研究进展[J]. 化工进展, 2025, 44(6): 3345-3363. |
| [2] | 郑慧哲, 王浩泽, 蒋杰, 赵玲, 奚桢浩. 反应与传质耦合的PCTG共聚酯圆盘反应器建模与模拟[J]. 化工进展, 2025, 44(6): 3372-3381. |
| [3] | 陈少伟, 陈奕, 牛江奇, 刘天奇, 黄建国, 陈焕浩, 范晓雷. 介质阻挡放电等离子体催化反应器研究进展及应用展望[J]. 化工进展, 2025, 44(6): 3175-3189. |
| [4] | 丁阿静, 周巧巧, 顾学红. 膜反应器中杨木催化气化制清洁合成气[J]. 化工进展, 2025, 44(5): 2716-2723. |
| [5] | 马梓轩, 施瑞晨, 刘明杰, 杨莹杰, 宋子瑜, 梅晓鹏, 高晓峰, 洪龙城, 姚思宇, 张治国, 任其龙. 环烷烃催化制氢反应器的设计与性能优化: 前沿进展与挑战[J]. 化工进展, 2025, 44(5): 2919-2937. |
| [6] | 窦玉, 王文选, 范春雷, 马吉亮, 梁财, 陈晓平. 脱硫石膏矿化CO2制备球霰石碳酸钙[J]. 化工进展, 2025, 44(4): 2328-2337. |
| [7] | 李梓良, 张玮, 胡恒, 王盈锦, 徐娜. 基于生成对抗网络的化工过程低成本mGAN-NN建模[J]. 化工进展, 2025, 44(4): 1978-1986. |
| [8] | 王宁, 陆诗建, 刘玲, 梁静, 刘苗苗, 孙梦圆, 康国俊. 胺吸收体系中CO2催化解吸再生技术的研究进展[J]. 化工进展, 2025, 44(1): 445-464. |
| [9] | 田晴, 刘青盟, 李方, 杨波, 张思远, 关自良. 细菌的耐盐调控及其在高盐生物脱氮除磷工艺中的应用[J]. 化工进展, 2025, 44(1): 465-476. |
| [10] | 李乐天, 陆诗建, 刘含笑, 吴黎明, 刘玲, 康国俊. 有机胺富液解吸再生研究进展[J]. 化工进展, 2025, 44(1): 490-499. |
| [11] | 乔磊, 张亚新, 魏博, 冉文燊, 马金荣, 王峰. 氧热法气流床电石反应器烧嘴布置参数及操作参数优化[J]. 化工进展, 2025, 44(1): 145-157. |
| [12] | 胡洋, 韩传军, 胡强, 李汶颖, 安全成, 苏洋, 武洪松, 袁果. 固体氧化物燃料电池用甲醇水蒸气重整反应器研究进展[J]. 化工进展, 2025, 44(1): 169-183. |
| [13] | 邹鹏翔, 张明阳, 朱文杰, 郭耀骏, 程婕, 赵妍舒, 袁迎春. 基于CFD的脂肪酸甲酯环氧化用液-液撞击流旋流反应器入口结构优化[J]. 化工进展, 2024, 43(S1): 166-173. |
| [14] | 王波, 王斌, 龚翔, 杨福胜, 方涛. 基于反应器设计的有机液态储氢载体脱氢反应强化研究进展[J]. 化工进展, 2024, 43(S1): 189-208. |
| [15] | 于梦洁, 吴语童, 罗发祥, 豆义波. 低浓度二氧化碳还原光催化剂结构设计的研究进展[J]. 化工进展, 2024, 43(S1): 335-350. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |