化工进展 ›› 2025, Vol. 44 ›› Issue (4): 1978-1986.DOI: 10.16085/j.issn.1000-6613.2024-0540
收稿日期:2024-04-02
修回日期:2024-05-14
出版日期:2025-04-25
发布日期:2025-05-07
通讯作者:
张玮
作者简介:李梓良(2000—),男,硕士研究生,研究方向为化工过程建模与优化。E-mail:link321654@163.com。
基金资助:
LI Ziliang(
), ZHANG Wei(
), HU Heng, WANG Yingjin, XU Na
Received:2024-04-02
Revised:2024-05-14
Online:2025-04-25
Published:2025-05-07
Contact:
ZHANG Wei
摘要:
使用深度学习建立化工过程模型往往面临数据获取成本高、数据短缺等问题。对此,本文提出了一种基于生成对抗网络(GANs)的低成本数据增强建模方法mGAN-NN。该方法在GANs生成器的损失函数中引入最大均值差异(MMD)判据,提高了生成数据与真实数据分布特征的相似度;然后利用生成的数据建立神经网络模型,进而使用真实实验数据对所建模型进行调整。这种方法明显的优势在于,即使在数据量有限的情况下,也能构建出鲁棒性强的模型。采用此方法建立了微反应器中制备脂肪酸甲酯磺酸盐(MES)活性物质量分数的预测模型,其拟合系数(R2)可达0.91,相较神经网络(ANN)提高了236%,相较支持向量机回归(SVR)提高了32%。同时,平均绝对误差(MAE)降至3.38,相较ANN减小了58%,相较SVR减小了45%,展示出了较高的泛化性以及预测精度。
中图分类号:
李梓良, 张玮, 胡恒, 王盈锦, 徐娜. 基于生成对抗网络的化工过程低成本mGAN-NN建模[J]. 化工进展, 2025, 44(4): 1978-1986.
LI Ziliang, ZHANG Wei, HU Heng, WANG Yingjin, XU Na. mGAN-NN method for low-cost chemical process modeling based on generative adversarial networks[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1978-1986.
| 工艺条件 | 最小值 | 最大值 |
|---|---|---|
| 磺化温度/℃ | 60 | 90 |
| SO3-MS摩尔比 | 0.8 | 1.6 |
| 老化时间/min | 20 | 60 |
| 老化温度/℃ | 50 | 100 |
表1 气液微磺化系统制备MES的工艺条件变化范围
| 工艺条件 | 最小值 | 最大值 |
|---|---|---|
| 磺化温度/℃ | 60 | 90 |
| SO3-MS摩尔比 | 0.8 | 1.6 |
| 老化时间/min | 20 | 60 |
| 老化温度/℃ | 50 | 100 |
| 编号 | 磺化 温度/℃ | SO3-MS 摩尔比 | 老化 时间/min | 老化 温度/℃ | 活性物 质量分数/% |
|---|---|---|---|---|---|
| 1 | 60 | 1.2 | 40 | 80 | 66.50 |
| 2 | 60 | 1.2 | 20 | 80 | 61.56 |
| 3 | 60 | 1.2 | 60 | 80 | 68.83 |
| 4 | 60 | 1.2 | 20 | 60 | 41.64 |
| 5 | 60 | 1.2 | 40 | 60 | 46.16 |
| 6 | 60 | 1.2 | 60 | 60 | 48.32 |
| 59 | 80 | 1.6 | 20 | 80 | 79.50 |
| 60 | 80 | 1.6 | 40 | 80 | 81.30 |
| 61 | 80 | 1.6 | 60 | 80 | 83.11 |
| 62 | 80 | 1.6 | 20 | 60 | 73.42 |
| 63 | 80 | 1.6 | 40 | 60 | 74.87 |
| 64 | 90 | 1.6 | 60 | 60 | 77.74 |
| 65 | 90 | 1.6 | 30 | 70 | 80.92 |
| 66 | 90 | 1.6 | 50 | 70 | 81.75 |
表2 气液微磺化系统制备MES部分实验数据
| 编号 | 磺化 温度/℃ | SO3-MS 摩尔比 | 老化 时间/min | 老化 温度/℃ | 活性物 质量分数/% |
|---|---|---|---|---|---|
| 1 | 60 | 1.2 | 40 | 80 | 66.50 |
| 2 | 60 | 1.2 | 20 | 80 | 61.56 |
| 3 | 60 | 1.2 | 60 | 80 | 68.83 |
| 4 | 60 | 1.2 | 20 | 60 | 41.64 |
| 5 | 60 | 1.2 | 40 | 60 | 46.16 |
| 6 | 60 | 1.2 | 60 | 60 | 48.32 |
| 59 | 80 | 1.6 | 20 | 80 | 79.50 |
| 60 | 80 | 1.6 | 40 | 80 | 81.30 |
| 61 | 80 | 1.6 | 60 | 80 | 83.11 |
| 62 | 80 | 1.6 | 20 | 60 | 73.42 |
| 63 | 80 | 1.6 | 40 | 60 | 74.87 |
| 64 | 90 | 1.6 | 60 | 60 | 77.74 |
| 65 | 90 | 1.6 | 30 | 70 | 80.92 |
| 66 | 90 | 1.6 | 50 | 70 | 81.75 |
| 超参数类型 | 生成器 | 鉴别器 |
|---|---|---|
| 网络结构 | 6-10-10-5 | 5-10-10-1 |
| 激活函数 | Leaky ReLU | Leaky ReLU、Sigmoid |
| 优化器 | SGD(0.04) | SGD(0.08) |
表3 GANs与mGANs所用结构参数
| 超参数类型 | 生成器 | 鉴别器 |
|---|---|---|
| 网络结构 | 6-10-10-5 | 5-10-10-1 |
| 激活函数 | Leaky ReLU | Leaky ReLU、Sigmoid |
| 优化器 | SGD(0.04) | SGD(0.08) |
| 编号 | 磺化 温度/℃ | SO3-MS 摩尔比 | 老化 时间/min | 老化 温度/℃ | 活性物 质量分数/% |
|---|---|---|---|---|---|
| 1 | 83.27961 | 1.161183 | 47.10971 | 81.89867 | 74.68918 |
| 2 | 86.30283 | 1.542565 | 33.57725 | 79.20454 | 86.05156 |
| 3 | 82.25621 | 1.208560 | 53.55812 | 74.62836 | 71.41930 |
| 4 | 72.73076 | 1.220473 | 56.39626 | 75.22123 | 68.25865 |
| 5 | 76.97067 | 1.519895 | 41.43793 | 93.79734 | 82.20417 |
| 6 | 79.32157 | 1.191388 | 50.84287 | 72.67689 | 68.36164 |
| 7 | 84.47624 | 1.593823 | 44.77314 | 87.52930 | 90.21171 |
| 8 | 88.42137 | 1.576962 | 48.98761 | 76.60762 | 88.80512 |
| 9 | 87.34681 | 1.532673 | 36.57060 | 81.57395 | 85.15310 |
| 10 | 72.72450 | 1.243067 | 52.85953 | 76.38229 | 59.94243 |
| 321 | 72.43844 | 1.418137 | 33.72336 | 86.06310 | 71.13159 |
| 322 | 87.74216 | 1.430092 | 25.99235 | 76.36067 | 69.06212 |
| 323 | 68.57316 | 1.467843 | 34.66464 | 93.57615 | 78.95146 |
| 324 | 67.15241 | 1.368005 | 48.84736 | 82.07817 | 45.17392 |
| 325 | 78.86573 | 1.366410 | 35.56188 | 68.77293 | 74.44617 |
| 326 | 89.28074 | 1.590475 | 22.41597 | 89.54008 | 87.87235 |
| 327 | 72.53215 | 1.027140 | 54.35593 | 61.22787 | 51.96266 |
| 328 | 65.12947 | 1.431815 | 24.65830 | 86.62648 | 51.53531 |
| 329 | 88.03262 | 1.594808 | 15.37602 | 89.72716 | 88.92242 |
| 330 | 71.01549 | 1.508555 | 27.28651 | 80.10245 | 75.49440 |
表4 基于GANs的部分生成数据
| 编号 | 磺化 温度/℃ | SO3-MS 摩尔比 | 老化 时间/min | 老化 温度/℃ | 活性物 质量分数/% |
|---|---|---|---|---|---|
| 1 | 83.27961 | 1.161183 | 47.10971 | 81.89867 | 74.68918 |
| 2 | 86.30283 | 1.542565 | 33.57725 | 79.20454 | 86.05156 |
| 3 | 82.25621 | 1.208560 | 53.55812 | 74.62836 | 71.41930 |
| 4 | 72.73076 | 1.220473 | 56.39626 | 75.22123 | 68.25865 |
| 5 | 76.97067 | 1.519895 | 41.43793 | 93.79734 | 82.20417 |
| 6 | 79.32157 | 1.191388 | 50.84287 | 72.67689 | 68.36164 |
| 7 | 84.47624 | 1.593823 | 44.77314 | 87.52930 | 90.21171 |
| 8 | 88.42137 | 1.576962 | 48.98761 | 76.60762 | 88.80512 |
| 9 | 87.34681 | 1.532673 | 36.57060 | 81.57395 | 85.15310 |
| 10 | 72.72450 | 1.243067 | 52.85953 | 76.38229 | 59.94243 |
| 321 | 72.43844 | 1.418137 | 33.72336 | 86.06310 | 71.13159 |
| 322 | 87.74216 | 1.430092 | 25.99235 | 76.36067 | 69.06212 |
| 323 | 68.57316 | 1.467843 | 34.66464 | 93.57615 | 78.95146 |
| 324 | 67.15241 | 1.368005 | 48.84736 | 82.07817 | 45.17392 |
| 325 | 78.86573 | 1.366410 | 35.56188 | 68.77293 | 74.44617 |
| 326 | 89.28074 | 1.590475 | 22.41597 | 89.54008 | 87.87235 |
| 327 | 72.53215 | 1.027140 | 54.35593 | 61.22787 | 51.96266 |
| 328 | 65.12947 | 1.431815 | 24.65830 | 86.62648 | 51.53531 |
| 329 | 88.03262 | 1.594808 | 15.37602 | 89.72716 | 88.92242 |
| 330 | 71.01549 | 1.508555 | 27.28651 | 80.10245 | 75.49440 |
| 编号 | 磺化 温度/℃ | SO3-MS 摩尔比 | 老化 时间/min | 老化 温度/℃ | 活性物 质量分数/% |
|---|---|---|---|---|---|
| 1 | 81.94295 | 1.589290 | 31.05080 | 53.97002 | 71.62635 |
| 2 | 85.71674 | 1.421059 | 54.15529 | 56.86942 | 79.99052 |
| 3 | 82.14872 | 1.557661 | 57.56562 | 82.33545 | 86.41391 |
| 4 | 65.56925 | 1.539463 | 38.97818 | 89.36489 | 84.61324 |
| 5 | 65.05901 | 1.102045 | 25.34751 | 69.97029 | 50.40371 |
| 6 | 83.24004 | 1.025123 | 45.12223 | 93.86857 | 79.09521 |
| 7 | 84.33916 | 1.494957 | 50.29488 | 61.54058 | 81.87912 |
| 8 | 85.11316 | 1.566982 | 18.85036 | 69.96391 | 82.20627 |
| 9 | 87.60520 | 1.297932 | 53.58565 | 68.32281 | 80.14999 |
| 10 | 55.89097 | 1.438010 | 31.89855 | 63.09228 | 53.58462 |
| 321 | 80.31209 | 1.484724 | 18.93740 | 91.06848 | 85.47252 |
| 322 | 89.57048 | 1.075123 | 45.77487 | 86.36514 | 74.65433 |
| 323 | 78.25847 | 0.994669 | 57.22416 | 66.59568 | 47.54068 |
| 324 | 70.41580 | 1.226993 | 58.36410 | 88.38225 | 81.18542 |
| 325 | 88.71901 | 1.592107 | 59.51335 | 81.95000 | 87.65301 |
| 326 | 85.77462 | 0.895628 | 39.64196 | 88.54185 | 65.74517 |
| 327 | 71.96869 | 1.531543 | 32.88764 | 75.05962 | 77.64820 |
| 328 | 53.58275 | 1.583197 | 52.03275 | 78.53060 | 80.30246 |
| 329 | 81.92057 | 1.586589 | 56.66399 | 58.78035 | 81.71073 |
| 330 | 63.53111 | 1.173218 | 58.87420 | 87.53125 | 73.50951 |
表5 基于mGANs的部分生成数据
| 编号 | 磺化 温度/℃ | SO3-MS 摩尔比 | 老化 时间/min | 老化 温度/℃ | 活性物 质量分数/% |
|---|---|---|---|---|---|
| 1 | 81.94295 | 1.589290 | 31.05080 | 53.97002 | 71.62635 |
| 2 | 85.71674 | 1.421059 | 54.15529 | 56.86942 | 79.99052 |
| 3 | 82.14872 | 1.557661 | 57.56562 | 82.33545 | 86.41391 |
| 4 | 65.56925 | 1.539463 | 38.97818 | 89.36489 | 84.61324 |
| 5 | 65.05901 | 1.102045 | 25.34751 | 69.97029 | 50.40371 |
| 6 | 83.24004 | 1.025123 | 45.12223 | 93.86857 | 79.09521 |
| 7 | 84.33916 | 1.494957 | 50.29488 | 61.54058 | 81.87912 |
| 8 | 85.11316 | 1.566982 | 18.85036 | 69.96391 | 82.20627 |
| 9 | 87.60520 | 1.297932 | 53.58565 | 68.32281 | 80.14999 |
| 10 | 55.89097 | 1.438010 | 31.89855 | 63.09228 | 53.58462 |
| 321 | 80.31209 | 1.484724 | 18.93740 | 91.06848 | 85.47252 |
| 322 | 89.57048 | 1.075123 | 45.77487 | 86.36514 | 74.65433 |
| 323 | 78.25847 | 0.994669 | 57.22416 | 66.59568 | 47.54068 |
| 324 | 70.41580 | 1.226993 | 58.36410 | 88.38225 | 81.18542 |
| 325 | 88.71901 | 1.592107 | 59.51335 | 81.95000 | 87.65301 |
| 326 | 85.77462 | 0.895628 | 39.64196 | 88.54185 | 65.74517 |
| 327 | 71.96869 | 1.531543 | 32.88764 | 75.05962 | 77.64820 |
| 328 | 53.58275 | 1.583197 | 52.03275 | 78.53060 | 80.30246 |
| 329 | 81.92057 | 1.586589 | 56.66399 | 58.78035 | 81.71073 |
| 330 | 63.53111 | 1.173218 | 58.87420 | 87.53125 | 73.50951 |
| 评价指标 | GANs | mGANs |
|---|---|---|
| W距离 | 113.40 | 74.45 |
| MMD | 0.4129 | 0.0056 |
表6 基于GANs与mGANs生成的数据与真实数据的分布距离
| 评价指标 | GANs | mGANs |
|---|---|---|
| W距离 | 113.40 | 74.45 |
| MMD | 0.4129 | 0.0056 |
| 神经网络结构 | 激活函数 | 优化器 | 权重衰减 |
|---|---|---|---|
| 4-8-12-8-1 | Leaky ReLU(0.02) | SGD(0.01) | 0.001 |
表7 预测模型使用的神经网络结构参数
| 神经网络结构 | 激活函数 | 优化器 | 权重衰减 |
|---|---|---|---|
| 4-8-12-8-1 | Leaky ReLU(0.02) | SGD(0.01) | 0.001 |
| 评价指标 | (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | 平均值 |
|---|---|---|---|---|---|---|---|---|---|
| 训练集R2 | 0.82 | 0.82 | 0.87 | 0.90 | 0.87 | 0.88 | 0.85 | 0.88 | 0.86 |
| 测试集R2 | 0.83 | 0.96 | 0.92 | 0.83 | 0.91 | 0.90 | 0.93 | 0.96 | 0.91 |
| 训练集MAE | 3.93 | 3.32 | 3.37 | 3.11 | 3.31 | 3.40 | 3.04 | 3.10 | 3.32 |
| 测试集MAE | 3.42 | 2.86 | 3.18 | 4.63 | 3.10 | 3.84 | 2.98 | 3.05 | 3.38 |
表8 8次随机划分数据集基于mGAN-NN建模的性能
| 评价指标 | (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | 平均值 |
|---|---|---|---|---|---|---|---|---|---|
| 训练集R2 | 0.82 | 0.82 | 0.87 | 0.90 | 0.87 | 0.88 | 0.85 | 0.88 | 0.86 |
| 测试集R2 | 0.83 | 0.96 | 0.92 | 0.83 | 0.91 | 0.90 | 0.93 | 0.96 | 0.91 |
| 训练集MAE | 3.93 | 3.32 | 3.37 | 3.11 | 3.31 | 3.40 | 3.04 | 3.10 | 3.32 |
| 测试集MAE | 3.42 | 2.86 | 3.18 | 4.63 | 3.10 | 3.84 | 2.98 | 3.05 | 3.38 |
| 评价指标 | (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | 平均值 |
|---|---|---|---|---|---|---|---|---|---|
| 训练集R2 | 0.097 | 0.850 | 0.007 | 0.860 | 0.001 | 0.037 | 0.440 | 0.060 | 0.294 |
| 测试集R2 | 0.006 | 0.800 | 0.030 | 0.820 | 0.004 | 0.067 | 0.430 | 0.010 | 0.271 |
| 训练集MAE | 9.140 | 3.800 | 9.650 | 3.470 | 9.670 | 10.280 | 7.010 | 8.960 | 7.748 |
| 测试集MAE | 10.930 | 4.200 | 7.830 | 5.600 | 9.460 | 8.710 | 6.830 | 11.50 | 8.133 |
表9 8次随机划分66组实验数据集基于ANN的模型性能
| 评价指标 | (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | 平均值 |
|---|---|---|---|---|---|---|---|---|---|
| 训练集R2 | 0.097 | 0.850 | 0.007 | 0.860 | 0.001 | 0.037 | 0.440 | 0.060 | 0.294 |
| 测试集R2 | 0.006 | 0.800 | 0.030 | 0.820 | 0.004 | 0.067 | 0.430 | 0.010 | 0.271 |
| 训练集MAE | 9.140 | 3.800 | 9.650 | 3.470 | 9.670 | 10.280 | 7.010 | 8.960 | 7.748 |
| 测试集MAE | 10.930 | 4.200 | 7.830 | 5.600 | 9.460 | 8.710 | 6.830 | 11.50 | 8.133 |
| 评价指标 | (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | 平均值 |
|---|---|---|---|---|---|---|---|---|---|
| 训练集R2 | 0.85 | 0.83 | 0.84 | 0.83 | 0.87 | 0.83 | 0.83 | 0.83 | 0.84 |
| 测试集R2 | 0.61 | 0.75 | 0.67 | 0.79 | 0.45 | 0.76 | 0.75 | 0.76 | 0.69 |
| 训练集MAE | 4.97 | 4.94 | 4.62 | 4.97 | 4.40 | 4.72 | 4.70 | 5.01 | 4.79 |
| 测试集MAE | 4.90 | 5.98 | 6.71 | 5.57 | 7.85 | 5.98 | 6.25 | 5.91 | 6.14 |
表10 8次随机划分66组实验数据集基于SVR的模型性能
| 评价指标 | (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | 平均值 |
|---|---|---|---|---|---|---|---|---|---|
| 训练集R2 | 0.85 | 0.83 | 0.84 | 0.83 | 0.87 | 0.83 | 0.83 | 0.83 | 0.84 |
| 测试集R2 | 0.61 | 0.75 | 0.67 | 0.79 | 0.45 | 0.76 | 0.75 | 0.76 | 0.69 |
| 训练集MAE | 4.97 | 4.94 | 4.62 | 4.97 | 4.40 | 4.72 | 4.70 | 5.01 | 4.79 |
| 测试集MAE | 4.90 | 5.98 | 6.71 | 5.57 | 7.85 | 5.98 | 6.25 | 5.91 | 6.14 |
| 次数 | 活性物质量分数/% |
|---|---|
| 1 | 88.15 |
| 2 | 89.14 |
| 3 | 90.67 |
| 平均值 | 89.32 |
表11 最优条件下3次独立重复实验结果
| 次数 | 活性物质量分数/% |
|---|---|
| 1 | 88.15 |
| 2 | 89.14 |
| 3 | 90.67 |
| 平均值 | 89.32 |
| 1 | BUTLER Keith T, DAVIES Daniel W, CARTWRIGHT Hugh, et al. Machine learning for molecular and materials science[J]. Nature, 2018, 559(7715): 547-555. |
| 2 | ZHU Xinzhe, WAN Zhonghao, TSANG Daniel C W, et al. Machine learning for the selection of carbon-based materials for tetracycline and sulfamethoxazole adsorption[J]. Chemical Engineering Journal, 2021, 406: 126782. |
| 3 | DONER Nimeti, CIDDI Kerem, YALCIN Ibrahim Berk, et al. Artificial neural network models for heat transfer in the freeboard of a bubbling fluidised bed combustion system[J]. Case Studies in Thermal Engineering, 2023, 49: 103145. |
| 4 | ZHUANG Fuzhen, QI Zhiyuan, DUAN Keyu, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109(1): 43-76. |
| 5 | PAN Sinno Jialin, YANG Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. |
| 6 | SHU Jun, XIE Qi, YI Lixuan, et al. Meta-weight-net: Learning an explicit mapping for sample weighting[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2019: 1919-1930. |
| 7 | ZHONG Shifa, HU Jiajie, YU Xiong, et al. Molecular image-convolutional neural network (CNN) assisted QSAR models for predicting contaminant reactivity toward OH radicals: Transfer learning, data augmentation and model interpretation[J]. Chemical Engineering Journal, 2021, 408: 127998. |
| 8 | VERMEIRE Florence H, GREEN William H. Transfer learning for solvation free energies: From quantum chemistry to experiments[J]. Chemical Engineering Journal, 2021, 418: 129307. |
| 9 | PAN Sinno Jialin, TSANG Ivor W, KWOK James T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210. |
| 10 | LONG Mingsheng, WANG Jianmin, DING Guiguang, et al. Transfer feature learning with joint distribution adaptation[C]//2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia: IEEE, 2013: 2200-2207. |
| 11 | SUN Baochen, FENG Jiashi, SAENKO Kate. Correlation alignment for unsupervised domain adaptation[M]//Csurka G. Domain adaptation in computer vision applications. Cham: Springer, 2017: 153-171. |
| 12 | SANTORO Adam, BARTUNOV Sergey, BOTVINICK Matthew, et al. Meta-learning with memory-augmented neural networks[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York, NY, USA: ACM, 2016: 1842-1850. |
| 13 | VINYALS Oriol, BLUNDELL Charles, LILLICRAP Timothy, et al. Matching networks for one shot learning[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: ACM, 2016: 3637-3645. |
| 14 | SNELL Jake, SWERSKY Kevin, ZEMEL Richard, et al. Prototypical networks for few-shot learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA: ACM, 2017: 4080-4090. |
| 15 | MALHOTRA Abhiraj. Single-shot image recognition using Siamese neural networks[C]//2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). Greater Noida, India: IEEE, 2023: 2550-2553. |
| 16 | LI Xinzhe, HUANG Jianqiang, LIU Yaoyao, et al. Learning to teach and learn for semi-supervised few-shot image classification[J]. Computer Vision and Image Understanding, 2021, 212: 103270. |
| 17 | FINN Chelsea, XU Kelvin, LEVINE Sergey. Probabilistic model-agnostic meta-learning[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal, Canada: ACM, 2018: 9537-9548. |
| 18 | YANG Ruizhao, LI Yun, QIN Binyi, et al. Pesticide detection combining the Wasserstein generative adversarial network and the residual neural network based on terahertz spectroscopy[J]. RSC Advances, 2022, 12(3): 1769-1776. |
| 19 | JIN Huaiping, HUANG Shuqi, WANG Bin, et al. Soft sensor modeling for small data scenarios based on data enhancement and selective ensemble[J]. Chemical Engineering Science, 2023, 279: 118958. |
| 20 | WANG Jinrui, HAN Baokun, BAO Huaiqian, et al. Data augment method for machine fault diagnosis using conditional generative adversarial networks[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234(12): 2719-2727. |
| 21 | ALQAHTANI Hamed, Manolya KAVAKLI-THORNE, KUMAR Gulshan. Applications of generative adversarial networks (GANs): An updated review[J]. Archives of Computational Methods in Engineering, 2021, 28(2): 525-552. |
| 22 | SHANG Zhiwu, ZHANG Jie, LI Wanxiang, et al. A novel small samples fault diagnosis method based on the self-attention Wasserstein generative adversarial network[J]. Neural Processing Letters, 2023, 55(5): 6377-6407. |
| 23 | ZHANG Han, XU Tao, LI Hongsheng, et al. StackGAN: Realistic image synthesis with stacked generative adversarial networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1947-1962. |
| 24 | WANG Chaoyue, XU Chang, YAO Xin, et al. Evolutionary generative adversarial networks[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(6): 921-934. |
| 25 | ZHOU Xiaokang, HU Yiyong, WU Jiayi, et al. Distribution bias aware collaborative generative adversarial network for imbalanced deep learning in industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 570-580. |
| 26 | QI Guojun. Loss-sensitive generative adversarial networks on lipschitz densities[J]. International Journal of Computer Vision, 2020, 128(5): 1118-1140. |
| 27 | ARJOVSKY Martin, CHINTALA Soumith, BOTTOU Léon, et al. Wasserstein generative adversarial networks[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney, NSW, Australia: ACM, 2017: 214-223. |
| 28 | HUANG Yiming, LEI Hang, LI Xiaoyu, et al. Quantum maximum mean discrepancy GAN[J]. Neurocomputing, 2021, 454: 88-100. |
| 29 | ZHANG Zhiqiang, FAN Bin, LIU Yong, et al. Rapid warning of wind turbine blade icing based on MIV-tSNE-RNN[J]. Journal of Mechanical Science and Technology, 2021, 35(12): 5453-5459. |
| 30 | HOSSAIN Md Moazzem, HOSSAIN Md ALI, MUSA MIAH Abu Saleh, et al. Stochastic neighbor embedding feature-based hyperspectral image classification using 3D convolutional neural network[J]. Electronics, 2023, 12(9): 2082. |
| 31 | 姜圣坤, 韩博, 赵鑫, 等. 微通道反应器中甲苯过量连续绝热硝化制备单硝基甲苯[J]. 化工进展, 2022, 41(6): 2910-2914. |
| JIANG Shengkun, HAN Bo, ZHAO Xin, et al. Preparation of mononitrotoluene by continuous adiabatic nitration of excess toluene in microreactor[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2910-2914. | |
| 32 | 王犇, 王超, 尹进华. 微反应器内邻氨基苯甲酸甲酯的连续重氮化工艺[J]. 化工进展, 2021, 40(10): 5678-5691. |
| WANG Ben, WANG Chao, YIN Jinhua. Continuous-flow diazotization of methyl anthranilate in microreactor system[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5678-5691. |
| [1] | 任世鹏, 安元, 娄春, 梅晟东, 刘凯, 陈新建. 融合深度学习算法的炉内燃烧温度场分布在线重建[J]. 化工进展, 2025, 44(4): 1923-1933. |
| [2] | 熊思恒, 黄冬梅, 肖媛, 黄晓璜, 易智康, 崔国民. 一种新的连续非结构模型同步优化质量交换网络[J]. 化工进展, 2025, 44(2): 635-645. |
| [3] | 肖媛, 陈怡, 刘思琪, 崔国民. 基于广义换热网络的质量交换网络质能比拟及全局优化[J]. 化工进展, 2025, 44(1): 121-134. |
| [4] | 梁永琪, 汤健, 夏恒, 陈佳昆, 乔俊飞. 基于耦合数值仿真的基准工况下焚烧炉内颗粒物浓度建模与分析[J]. 化工进展, 2024, 43(S1): 106-120. |
| [5] | 王亚男, 刘琳琳, 庄钰, 都健. 基于代理模型的环氧乙烷制乙二醇工艺优化同步热集成[J]. 化工进展, 2024, 43(9): 5234-5241. |
| [6] | 张笑恬, 刘思琪, 崔国民, 黄晓璜, 段欢欢, 王金阳. 基于定向协调策略改进换热单元优化的换热网络综合[J]. 化工进展, 2024, 43(8): 4342-4353. |
| [7] | 易智康, 刘思琪, 崔国民, 段欢欢, 肖媛. 有分流棋盘模型应用于不相容多组分质量交换网络优化[J]. 化工进展, 2024, 43(6): 2986-2995. |
| [8] | 郑可欣, 江雨欣, 毕可鑫, 赵祺铭, 陈少臣, 王冰冰, 任俊宇, 吉旭, 邱彤, 戴一阳. 用于蒸汽裂解产物成分预测的集成迁移学习框架[J]. 化工进展, 2024, 43(5): 2880-2889. |
| [9] | 李萍, 陈修乐, 张强, 念腾飞, 王育兴, 王盟. 抑烟沥青复掺配比优化及抑烟效果评价[J]. 化工进展, 2024, 43(4): 1923-1933. |
| [10] | 张书铭, 刘化章. 基于BP神经网络模型优化Fe1-x O基氨合成催化剂[J]. 化工进展, 2024, 43(3): 1302-1308. |
| [11] | 侯立凯, 范旭, 包福兵. 微小液体流量校准技术[J]. 化工进展, 2024, 43(2): 579-585. |
| [12] | 单良, 仰文淇, 洪波, 周荣幸, 孔明. 基于LSMR算法的火焰三维温度场重建[J]. 化工进展, 2024, 43(2): 659-666. |
| [13] | 胡恒, 徐娜, 李梓良, 于嘉朋, 李旭, 张玮. T型微反应器中合成脂肪酸甲酯磺酸盐动力学及工艺优化[J]. 化工进展, 2024, 43(12): 6634-6644. |
| [14] | 李耀翔, 范峥, 郝新宇, 刘姝延, 张叶, 韩洁. 基于人工智能混合模型的乙二醇电渗析脱盐优化[J]. 化工进展, 2024, 43(11): 6049-6058. |
| [15] | 薄守石, 张家凯, 徐子涵, 孙兰义, 张其克. 利用NSGA-Ⅱ对分离环己酮环己醇体系隔壁塔的多目标优化[J]. 化工进展, 2024, 43(11): 6077-6082. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |