| [1] |
CHU Steven, MAJUMDAR Arun. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
|
| [2] |
JIAO Yan, ZHENG Yao, JARONIEC Mietek, et al. Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions[J]. Chemical Society Reviews, 2015, 44(8): 2060-2086.
|
| [3] |
何杨华, 徐金铭, 王发楠, 等. Ni-Fe基析氧阳极材料的研究进展[J]. 化工进展, 2016, 35(7): 2057-2062.
|
|
HE Yanghua, XU Jinming, WANG Fanan, et al. Recent advances in Ni-Fe-based electrocatalysts for oxygen evolution reaction[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2057-2062.
|
| [4] |
LI Xiaoge, GUAN BU yuan, GAO Shuyan, et al. A general dual-templating approach to biomass-derived hierarchically porous heteroatom-doped carbon materials for enhanced electrocatalytic oxygen reduction[J]. Energy & Environmental Science, 2019, 12(2): 648-655.
|
| [5] |
ZHANG Huabin, LIU Yanyu, CHEN Tao, et al. Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix[J]. Advanced Materials, 2019, 31(48): e1904548.
|
| [6] |
KASIAN Olga, GROTE Jan-Philipp, GEIGER Simon, et al. The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium[J]. Angewandte Chemie International Edition, 2018, 57(9): 2488-2491.
|
| [7] |
YU Ning, ZHANG Zhijie, CHAI Yongming, et al. Regulation engineering of the surface and structure of perovskite-based electrocatalysts for the oxygen evolution reaction[J]. Materials Chemistry Frontiers, 2023, 7(19): 4236-4258.
|
| [8] |
Tyler MEFFORD J, RONG Xi, ABAKUMOV Artem M, et al. Water electrolysis on La1- x Sr x CoO3- δ perovskite electrocatalysts[J]. Nature Communications, 2016, 7: 11053.
|
| [9] |
ZHAO Chunhua, LI Nan, ZHANG Ruizhi, et al. Surface reconstruction of La0.8Sr0.2Co0.8Fe0.2O3- δ for superimposed OER performance[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 47858-47867.
|
| [10] |
LETTENMEIER P, WANG R, ABOUATALLAH R, et al. Durable membrane electrode assemblies for proton exchange membrane electrolyzer systems operating at high current densities[J]. Electrochimica Acta, 2016, 210: 502-511.
|
| [11] |
LI Dongguo, PARK Eun Joo, ZHU Wenlei, et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers[J]. Nature Energy, 2020, 5(5): 378-385.
|
| [12] |
KIM Bae-Jung, FABBRI Emiliana, ABBOTT Daniel F, et al. Functional role of Fe-doping in co-based perovskite oxide catalysts for oxygen evolution reaction[J]. Journal of the American Chemical Society, 2019, 141(13): 5231-5240.
|
| [13] |
BIAN Juanjuan, LI Zhipeng, LI Nianwu, et al. Oxygen deficient LaMn0.75Co0.25O3- δ nanofibers as an efficient electrocatalyst for oxygen evolution reaction and zinc-air batteries[J]. Inorganic Chemistry, 2019, 58(12): 8208-8214.
|
| [14] |
RETUERTO Maria, Federico CALLE-VALLEJO, PASCUAL Laura, et al. La1.5Sr0.5NiMn0.5Ru0.5O6 double perovskite with enhanced ORR/OER bifunctional catalytic activity[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21454-21464.
|
| [15] |
LI Jing, YANG Fan, DU Yunzhu, et al. The critical role of A, B-site cations and oxygen vacancies on the OER electrocatalytic performances of Bi0.15Sr0.85Co1- x Fe x O3- δ (0.2≤x≤1) perovskites in alkaline media[J]. Chemical Engineering Journal, 2023, 451: 138646.
|
| [16] |
ZHAO Jiawei, SHI Zixiao, LI Chengfei, et al. Regulation of perovskite surface stability on the electrocatalysis of oxygen evolution reaction[J]. ACS Materials Letters, 2021, 3(6): 721-737.
|
| [17] |
LIU Dong, ZHOU Pengfei, BAI Haoyun, et al. Development of perovskite oxide-based electrocatalysts for oxygen evolution reaction[J]. Small, 2021, 17(43): e2101605.
|
| [18] |
兰高力, 葛性波, 梁梓灏. 电化学刻蚀制备表面纳米多孔NiMoCu电解水析氢催化剂[J]. 化工新型材料, 2022, 50(4): 202-207.
|
|
LAN Gaoli, GE Xingbo, LIANG Zihao. Surface nanoporous NiMoCu electrode material prepared by electrochemical dealloying for hydrogen evolution[J]. New Chemical Materials, 2022, 50(4): 202-207.
|
| [19] |
LIU Huan, XIE Rongrong, WANG Qixiang, et al. Enhanced OER performance and dynamic transition of surface reconstruction in LaNiO3 thin films with nanoparticles decoration[J]. Advanced Science, 2023, 10(13): e2207128.
|
| [20] |
WU Zhengcui, ZOU Zexian, HUANG Jiansong, et al. Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting[J]. Journal of Catalysis, 2018, 358: 243-252.
|
| [21] |
ZOU Zexian, WANG Xiangyu, HUANG Jiansong, et al. An Fe-doped nickel selenide nanorod/nanosheet hierarchical array for efficient overall water splitting[J]. Journal of Materials Chemistry A, 2019, 7(5): 2233-2241.
|
| [22] |
LIU Jishan, JIA Endong, WANG Le, et al. Tuning the electronic structure of LaNiO3 through alloying with strontium to enhance oxygen evolution activity[J]. Advanced Science, 2019, 6(19): 1901073.
|
| [23] |
LU Chengxing, YAN Yu, ZHAI Tengfei, et al. 2-nm-thick NiCo LDH@NiSe single-crystal nanorods grown on Ni foam as integrated electrode with enhanced areal capacity for supercapacitors[J]. Batteries & Supercaps, 2020, 3(6): 534-540.
|
| [24] |
JEGHAN Shrine Maria Nithya, KIM Dongjoon, LEE Yuhyeon, et al. Designing a smart heterojunction coupling of cobalt-iron layered double hydroxide on nickel selenide nanosheets for highly efficient overall water splitting kinetics[J]. Applied Catalysis B: Environmental, 2022, 308: 121221.
|
| [25] |
SUN Yu, LI Ran, CHEN Xiaoxuan, et al. A-site management prompts the dynamic reconstructed active phase of perovskite oxide OER catalysts[J]. Advanced Energy Materials, 2021, 11(12): 2003755.
|
| [26] |
彭立山, 魏子栋. 高性能电解水电极催化材料的设计及产品工程[J]. 化学进展, 2018, 30(1): 14-28.
|
|
PENG Lishan, WEI Zidong. Design and product engineering of high-performance electrode catalytic materials for water electrolysis[J]. Progress in Chemistry, 2018, 30(1): 14-28.
|
| [27] |
TONG Yun, WU Junchi, CHEN Pengzuo, et al. Vibronic superexchange in double perovskite electrocatalyst for efficient electrocatalytic oxygen evolution[J]. Journal of the American Chemical Society, 2018, 140(36): 11165-11169.
|
| [28] |
ISLAM Quazi Arif, MAJEE Rahul, BHATTACHARYYA Sayan. Bimetallic nanoparticle decorated perovskite oxide for state-of-the-art trifunctional electrocatalysis[J]. Journal of Materials Chemistry A, 2019, 7(33): 19453-19464.
|
| [29] |
TONG Yun, GUO Yuqiao, CHEN Pengzuo, et al. Spin-state regulation of perovskite cobaltite to realize enhanced oxygen evolution activity[J]. Chem, 2017, 3(5): 812-821.
|
| [30] |
ASHOK Anchu, KUMAR Anand, BHOSALE Rahul R, et al. Combustion synthesis of bifunctional LaMO3 (M=Cr, Mn, Fe, Co, Ni) perovskites for oxygen reduction and oxygen evolution reaction in alkaline media[J]. Journal of Electroanalytical Chemistry, 2018, 809: 22-30.
|
| [31] |
GONG Yaqiong, XU Zhoufeng, PAN Hailong. Facile synthesis and characterization of MOF-derived porous Co3O4 composite for oxygen evolution reaction[J]. ChemistrySelect, 2019, 4(4): 1131-1137.
|
| [32] |
SINGH Narendra Kumar, SHARMA Priya, KUMAR Indresh, et al. Oxygen evolution electrocatalytic properties of perovskite-type La1- x Sr x CoO3 (0<x<0.8) oxides obtained by polyvinylpyrrolidone sol-gel route[J]. International Journal of Electrochemical Science, 2019, 14(12): 11379-11390.
|
| [33] |
TSUJI Etsushi, MOTOHASHI Teruki, NODA Hiroyuki, et al. Brownmillerite-type Ca2FeCoO5 as a practicable oxygen evolution reaction catalyst[J]. ChemSusChem, 2017, 10(14): 2864-2868.
|
| [34] |
ZHANG Daiwei, SONG Yufeng, DU Zhenzhen, et al. Active LaNi1- x Fe x O3 bifunctional catalysts for air cathodes in alkaline media[J]. Journal of Materials Chemistry A, 2015, 3(18): 9421-9426.
|
| [35] |
HAN Yujie, ZHU Zhijun, HUANG Liang, et al. Hydrothermal synthesis of polydopamine-functionalized cobalt-doped lanthanum nickelate perovskite nanorods for efficient water oxidation in alkaline solution[J]. Nanoscale, 2019, 11(41): 19579-19585.
|
| [36] |
SAAD Ali, LIU Dongqing, WU Yuchen, et al. Ag nanoparticles modified crumpled borophene supported Co3O4 catalyst showing superior oxygen evolution reaction (OER) performance[J]. Applied Catalysis B: Environmental, 2021, 298: 120529.
|
| [37] |
ZHANG Nan, HU Yang, AN Li, et al. Surface activation and Ni-S stabilization in NiO/NiS2 for efficient oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2022, 61(35): e202207217.
|
| [38] |
WEN Qunlei, WANG Shuzhe, WANG Ruiwen, et al. Nanopore-rich NiFe LDH targets the formation of the high-valent nickel for enhanced oxygen evolution reaction[J]. Nano Research, 2023, 16(2): 2286-2293.
|