| 1 |
LI Benzheng, SHI Yongkui, HAO Jian, et al. Research on a carbon emission calculation model and method for an underground fully mechanized mining process[J]. Energies, 2022, 15(8): 2871.
|
| 2 |
International Energy Agency. Global Energy Review: CO2 Emissions in 2021[EB/OL]. (2022-03-08) [2024-09-30]. .
|
| 3 |
JIANG Wufeng, LI Xiaoshan, GAO Ge, et al. Advances in applications of ionic liquids for phase change CO2 capture[J]. Chemical Engineering Journal, 2022, 445: 136767.
|
| 4 |
ZHANG Na, PAN Zhen, ZHANG Zhien, et al. CO2 capture from coalbed methane using membranes: A review[J]. Environmental Chemistry Letters, 2020, 18(1): 79-96.
|
| 5 |
CHAI Slyvester Yew Wang, Lock Hei NGU, Bing Shen HOW. Review of carbon capture absorbents for CO2 utilization[J]. Greenhouse Gases-Science and Technology, 2022, 12(3): 394-427.
|
| 6 |
胡登, 王星博, 陈新庆, 等. 二氧化碳捕集-转化一体化技术研究进展[J]. 科学通报, 2024, 69(8): 1012-1024.
|
|
HU Deng, WANG Xingbo, CHEN Xinqing, et al. Research status and prospects on integrated carbon capture and conversion[J]. Chinese Science Bulletin, 2024, 69(8): 1012-1024.
|
| 7 |
GIZER Suleyman G, POLAT Osman, Manoj K RAM, et al. Recent developments in CO2 capture, utilization, related materials, and challenges[J]. International Journal of Energy Research, 2022, 46(12): 16241-16263.
|
| 8 |
SUN Shuzhuang, SUN Hongman, WILLIAMS Paul T, et al. Recent advances in integrated CO2 capture and utilization: A review[J]. Sustainable Energy & Fuels, 2021, 5(18): 4546-4559.
|
| 9 |
OMODOLOR Ibeh S, OTOR Hope O, ANDONEGUI Joseph A, et al. Dual-function materials for CO2 capture and conversion: A review[J]. Industrial & Engineering Chemistry Research, 2020, 59(40): 17612-17631.
|
| 10 |
AKPASI Stephen Okiemute, Yusuf Makarfi ISA. Review of carbon capture and methane production from carbon dioxide[J]. Atmosphere, 2022, 13(12): 1958.
|
| 11 |
Raktim SEN, GOEPPERT Alain, KAR Sayan, et al. Hydroxide based integrated CO2 capture from air and conversion to methanol[J]. Journal of the American Chemical Society, 2020, 142(10): 4544-4549.
|
| 12 |
SHAO Bin, HU Guihua, ALKEBSI Khalil A M, et al. Heterojunction-redox catalysts of Fe x Co y Mg10CaO for high-temperature CO2 capture and in situ conversion in the context of green manufacturing[J]. Energy & Environmental Science, 2021, 14(4): 2291-2301.
|
| 13 |
DUYAR Melis S, Martha A Arellano TREVIÑO, FARRAUTO Robert J. Dual function materials for CO2 capture and conversion using renewable H2 [J]. Applied Catalysis B: Environmental, 2015, 168: 370-376.
|
| 14 |
WANG Xingbo, HU Deng, HAO Yingdong, et al. Continuous CO2 abatement via integrated carbon capture and conversion over Ni-MgO-Al2O3 dual-functional materials[J]. Separation and Purification Technology, 2023, 322: 124295.
|
| 15 |
郭真良, 卞晓律, 杜宇搏, 等. 集成二氧化碳捕集与甲烷化转化研究进展[J]. 燃料化学学报(中英文), 2023, 51(3): 293-303.
|
|
GUO Zhenliang, BIAN Xiaolv, DU Yubo, et al. Recent advances in integrated carbon dioxide capture and methanation technology[J]. Journal of Fuel Chemistry and Technology, 2023, 51(3): 293-303.
|
| 16 |
QIAO Yuanting, LIU Weishan, GUO Ruonan, et al. Techno-economic analysis of integrated carbon capture and utilisation compared with carbon capture and utilisation with syngas production[J]. Fuel, 2023, 332: 125972.
|
| 17 |
Zongze LYU, DU Hong, XU Shaojun, et al. Techno-economic analysis on CO2 mitigation by integrated carbon capture and methanation[J]. Applied Energy, 2024, 355: 122242.
|
| 18 |
ZHOU Zhongjin, SUN Nannan, WANG Baodeng, et al. 2D-layered Ni-MgO-Al2O3 nanosheets for integrated capture and methanation of CO2 [J]. ChemSusChem, 2020, 13(2): 360-368.
|
| 19 |
PALMER Graham, ROBERTS Ashley, HOADLEY Andrew, et al. Life-cycle greenhouse gas emissions and net energy assessment of large-scale hydrogen production via electrolysis and solar PV[J]. Energy & Environmental Science, 2021, 14(10): 5113-5131.
|
| 20 |
ZHANG Jinxu, WANG Zhihua, HE Yong, et al. Comparison of onshore/offshore wind power hydrogen production through water electrolysis by life cycle assessment[J]. Sustainable Energy Technologies and Assessments, 2023, 60: 103515.
|
| 21 |
ZHAO Zewen, YU Zhiqiang, MA Wenhui, et al. Life cycle assessment of direct synthesis of organosilicon monomer in China[J]. Journal of Cleaner Production, 2022, 377: 134461.
|
| 22 |
SHAYA Negar, Simon GLÖESER-CHAHOUD. A review of life cycle assessment (LCA) studies for hydrogen production technologies through water electrolysis: Recent advances[J]. Energies, 2024, 17(16): 3968.
|
| 23 |
BHANDARI Ramchandra, TRUDEWIND Clemens A, ZAPP Petra. Life cycle assessment of hydrogen production via electrolysis-A review[J]. Journal of Cleaner Production, 2014, 85: 151-163.
|
| 24 |
Jan Christian KOJ, WULF Christina, SCHREIBER Andrea, et al. Site-dependent environmental impacts of industrial hydrogen production by alkaline water electrolysis[J]. Energies, 2017, 10(7): 860.
|
| 25 |
YANG Shengqiang, MAO Dan, YU Zhiqiang, et al. Comparison of life cycle assessment between hydrogen production from silicon waste and alkaline water electrolysis[J]. Science of The Total Environment, 2024, 920: 171065.
|
| 26 |
王珂, 齐付野, 林丽华. 吸附塔的制造工艺要点[J]. 石油和化工设备, 2014, 17(4): 40-41.
|
|
WANG Ke, QI Fuye, LIN Lihua. Critical aspects of the adsorption tower manufacturing process [J]. Petro & Chemical Equipment, 2014, 17(4): 40-41.
|
| 27 |
STERNBERG André, BARDOW André. Life cycle assessment of power-to-gas: Syngas vs methane[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(8): 4156-4165.
|
| 28 |
刘玮, 万燕鸣, 熊亚林, 等. 碳中和目标下电解水制氢关键技术及价格平准化分析[J]. 电工技术学报, 2022, 37(11): 2888-2896.
|
|
LIU Wei, WAN Yanming, XIONG Yalin, et al. Key technology of water electrolysis and levelized cost of hydrogen analysis under carbon neutral vision [J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2888-2896.
|
| 29 |
王明华. 新能源电解水制氢技术经济性分析[J]. 现代化工, 2023, 43(5): 1-5.
|
|
WANG Minghua. Technical economic analysis on hydrogen production from water electrolysis by new energy[J]. Modern Chemical Industry, 2023, 43(5): 1-5.
|