化工进展 ›› 2025, Vol. 44 ›› Issue (5): 2879-2887.DOI: 10.16085/j.issn.1000-6613.2024-1737

• CO2减排利用 • 上一篇    

基于LCA的CO2捕集-甲烷化一体化技术碳足迹分析

付紫君1,2(), 宋学行2, 沈群2, 王晓波1(), 顾佳名2, 汪丹峰2, 魏伟2, 孙楠楠2()   

  1. 1.太原理工大学安全与应急管理工程学院,山西 太原 030024
    2.中国科学院上海高等研究院,中国科学院低碳转化科学与工程重点实验室,上海 201210
  • 收稿日期:2024-10-30 修回日期:2025-01-03 出版日期:2025-05-25 发布日期:2025-05-20
  • 通讯作者: 王晓波,孙楠楠
  • 作者简介:付紫君(1999—),女,硕士研究生,研究方向为低碳技术经济性评估。E-mail:fzj1975480563@163.com
  • 基金资助:
    中国科学院战略性先导科技专项(XDA29040900);中国科学院青年创新促进会项目(2021286)

Carbon footprint analysis of integrated CO2 capture and methanation technology based on life cycle assessment

FU Zijun1,2(), SONG Xuehang2, SHEN Qun2, WANG Xiaobo1(), GU Jiaming2, WANG Danfeng2, WEI Wei2, SUN Nannan2()   

  1. 1.College of Safety and Emergency Management Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    2.CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
  • Received:2024-10-30 Revised:2025-01-03 Online:2025-05-25 Published:2025-05-20
  • Contact: WANG Xiaobo, SUN Nannan

摘要:

碳捕集、利用与封存(CCUS)技术被视为减少化石能源利用过程中碳排放的重要途径,然而,传统的CCUS技术面临高能耗、高成本的缺点。CO2捕集转化一体化技术则通过将CO2吸附和催化转化集成的策略来克服以上缺点。近年来,研究者们探究了碳捕集与不同的CO2转化途径集成的可行性,其中甲烷化技术受到了广泛关注。作为一种新型减排技术,评估其低碳性能对于提升技术竞争力具有重要意义。本研究基于本文作者课题组前期的实验成果,利用Aspen plus对CO2捕集-甲烷化一体化技术(ICCC-CH4)进行工艺模拟,并基于生命周期理论,构建了该工艺过程碳足迹核算方法学模型,对该技术的碳排放量进行计算与分析。研究发现,在目前电网条件下,ICCC-CH4技术碳排放量为0.22kg CO2/MJ;在目前风电、水电和核电条件下,该技术甚至可以实现负碳排放。未来随着碱性电解水电解效率的提升,在光伏发电条件下,该技术有望在2030年实现近零碳排放。此外,通过提高氢气利用率,发现该技术碳排放量下降至0.207kg CO2/MJ,相比当前水平下降6%。然而,提升双功能催化剂材料性能对于碳排放量的影响微弱。

关键词: CO2捕集-转化一体化, 生命周期评价, 碳足迹, 甲烷化

Abstract:

Carbon capture, utilization, and storage (CCUS) technology stands as a pivotal approach to mitigating carbon emissions stemming from fossil energy utilization. However, conventional CCUS technologies grapple with the drawbacks of high energy consumption and costs. The integrated CO2 capture and conversion technology addresses these challenges by seamlessly integrating CO2 adsorption with catalytic conversion processes. In recent years, researchers have explored the feasibility of integrating carbon capture with diverse CO2 conversion pathways, with methanation garnering substantial attention. As an emerging technology for emission reduction, assessing its low-carbon attributes is vital for enhancing its technical competitiveness. Based on previous experimental work conducted by our research group, this study employs Aspen Plus to simulate the integrated CO2 capture and methanation technology (ICCC-CH4). Furthermore, leveraging the life cycle assessment framework, we establish a methodological model for carbon footprint accounting of this process, enabling the calculation and analysis of the technology’s carbon emissions. The study finds that under current grid conditions, the ICCC-CH4 technology emits 0.22kg CO2/MJ. However, when powered by wind, hydro, and nuclear energy, the technology can even achieve negative carbon emissions. With future improvements in alkaline water electrolysis efficiency, under photovoltaic power generation, the technology is expected to achieve near-zero carbon emissions by 2030. By enhancing hydrogen utilization efficiency, the carbon emissions of the technology can be reduced to 0.207kg CO2/MJ, marking a 6% decrease compared to current levels. Conversely, enhancements in dual-functional material performance exert a negligible impact on carbon emissions.

Key words: integrated CO2 capture and conversion, life cycle assessment, carbon footprint, methanation

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn