化工进展 ›› 2024, Vol. 43 ›› Issue (12): 6983-6994.DOI: 10.16085/j.issn.1000-6613.2023-2187
• 资源与环境化工 • 上一篇
高文芳1(), 崔天傲1, 赵新宁1, 崔晗1,2,3, 曾献举1, 李华杰1, 卢江华4, 吕龙义1(
), 孙峙3,5(
)
收稿日期:
2023-12-12
修回日期:
2024-06-07
出版日期:
2024-12-15
发布日期:
2025-01-11
通讯作者:
吕龙义,孙峙
作者简介:
高文芳(1990—),女,副教授,博士生导师,研究方向为碳排放核算与评估。E-mail:wfgao@hebut.edu.cn。
基金资助:
GAO Wenfang1(), CUI Tian’ao1, ZHAO Xinning1, CUI Han1,2,3, ZENG Xianju1, LI Huajie1, LU Jianghua4, LYU Longyi1(
), SUN Zhi3,5(
)
Received:
2023-12-12
Revised:
2024-06-07
Online:
2024-12-15
Published:
2025-01-11
Contact:
LYU Longyi, SUN Zhi
摘要:
随着电动汽车产业的蓬勃发展,锂离子电池作为电动汽车的核心部件,其环境影响和可持续性研究得到了广泛关注。在双碳背景下,基于全生命周期的锂离子电池碳足迹评价已经成为解决锂电池可持续发展的关键问题,不同研究由于锂离子电池材料、回收技术等差异,研究结果差异较大。本文总结了锂离子电池全生命周期碳足迹的研究进展,对锂离子电池“从摇篮到坟墓”(全生命周期)、“从大门到大门”(生产阶段)、“从摇篮到摇篮”(回收阶段)三个方面进行了总结分析,重点关注了生产阶段与回收阶段,分析发现生产阶段磷酸铁锂电池的碳足迹较低,回收阶段中湿法回收镍钴锰酸锂电池的效益最优,新技术的研发、绿色能源的开发与使用能有效减少锂离子电池全生命周期中生产、使用、回收等阶段的碳足迹。最后,对影响锂离子电池碳足迹的多个因素进行了展望,为锂离子电池的可持续发展与双碳目标的实现提供了依据。
中图分类号:
高文芳, 崔天傲, 赵新宁, 崔晗, 曾献举, 李华杰, 卢江华, 吕龙义, 孙峙. 锂离子电池全生命周期碳足迹评价[J]. 化工进展, 2024, 43(12): 6983-6994.
GAO Wenfang, CUI Tian’ao, ZHAO Xinning, CUI Han, ZENG Xianju, LI Huajie, LU Jianghua, LYU Longyi, SUN Zhi. Critical review on life cycle carbon footprint assessment of lithium-ion battery[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6983-6994.
16 | 任海. 中国新能源汽车用锂电池产业现状及发展趋势[J]. 当代化工研究, 2021(6): 14-15. |
REN Hai. Current status and development trend of lithium battery industry for new energy vehicles in China[J]. Modern Chemical Research, 2021(6): 14-15. | |
17 | 来鑫, 陈权威, 顾黄辉, 等. 面向“双碳” 战略目标的锂离子电池生命周期评价:框架、方法与进展[J]. 机械工程学报, 2022, 58(22): 3-18. |
LAI Xin, CHEN Quanwei, GU Huanghui, et al. Life cycle assessment of Lithium-ion batteries for carbon-peaking and carbon-neutrality: Framework, methods, and progress[J]. Journal of Mechanical Engineering, 2022, 58(22): 3-18. | |
18 | KALLITSIS Evangelos, LANDER Laura, EDGE Jacqueline G, et al. Safe and sustainable lithium-ion batteries[M]. 2022. |
19 | SHAHJALAL Mohammad, ROY Probir Kumar, SHAMS Tamanna, et al. A review on second-life of Li-ion batteries: Prospects, challenges, and issues[J]. Energy, 2022, 241: 122881. |
20 | AKASAPU U, HEHENBERGER P. A design process model for battery systems based on existing life cycle assessment results[J]. Journal of Cleaner Production, 2023, 407: 137149. |
21 | ZHANG Hongliang, XUE Bingya, LI Songnian, et al. Life cycle environmental impact assessment for battery-powered electric vehicles at the global and regional levels[J]. Scientific Reports, 2023, 13(1): 7952. |
22 | KELLY Jarod C, DAI Qiang, WANG Michael. Globally regional life cycle analysis of automotive lithium-ion nickel manganese cobalt batteries[J]. Mitigation and Adaptation Strategies for Global Change, 2020, 25(3): 371-396. |
23 | CHEN Quanwei, LAI Xin, GU Huanghui, et al. Investigating carbon footprint and carbon reduction potential using a cradle-to-cradle LCA approach on lithium-ion batteries for electric vehicles in China[J]. Journal of Cleaner Production, 2022, 369: 133342 |
24 | CHEN Quanwei, HOU Yukun, LAI Xin, et al. Evaluating environmental impacts of different hydrometallurgical recycling technologies of the retired nickel-manganese-cobalt batteries from electric vehicles in China[J]. Separation and Purification Technology, 2023, 311: 123277. |
25 | MAKUZA Brian, TIAN Qinghua, GUO Xueyi, et al. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review[J]. Journal of Power Sources, 2021, 491: 229622. |
1 | 王志远, 许亚杰. 从碳足迹看汽车全产业链协同降碳之路[N]. 中国青年报, 2023-09-28(12). |
Wang Zhiyuan, Xu Yajie. From the perspective of carbon footprint, the road of collaborative carbon reduction in the whole automobile industry chain is discussed[N]. China Youth Daily, 2023-09-28(12). | |
2 | 林卫斌, 吴嘉仪. 碳中和目标下中国能源转型框架路线图探讨[J]. 价格理论与实践, 2021(6): 9-12. |
LIN Weibin, WU Jiayi. Discussion on the roadmap of China’s energy transition framework under the goal of carbon neutrality[J]. Price (Theory & Practice), 2021(6): 9-12. | |
3 | SACCHI R, BAUER C, COX B, et al. When, where and how can the electrification of passenger cars reduce greenhouse gas emissions?[J]. Renewable and Sustainable Energy Reviews, 2022, 162: 112475. |
4 | WINSLOW Kevin M, LAUX Steven J, TOWNSEND Timothy G. A review on the growing concern and potential management strategies of waste lithium-ion batteries[J]. Resources, Conservation and Recycling, 2018, 129: 263-277. |
5 | WU Yang Andrew, Artie W NG, YU Zichao, et al. A review of evolutionary policy incentives for sustainable development of electric vehicles in China: Strategic implications[J]. Energy Policy, 2021, 148: 111983. |
6 | 杨红斌. 用于新能源汽车的锂离子动力电池研究进展[J]. 世界科技研究与发展, 2020, 42(1): 79-86. |
YANG Hongbin. Competition situation, technology trends and enlightenment of lithium-ion power batteries in the development of new energy vehicles[J]. World Sci-Tech R & D, 2020, 42(1): 79-86. | |
7 | BICKERT Stefan, KAMPKER Achim, GREGER Dennis. Developments of CO2-emissions and costs for small electric and combustion engine vehicles in Germany[J]. Transportation Research Part D: Transport and Environment, 2015, 36: 138-151. |
8 | FALCÃO Eduardo Aparecido Moreira, TEIXEIRA Ana Carolina Rodrigues, SODRÉ José Ricardo. Analysis of CO2 emissions and techno-economic feasibility of an electric commercial vehicle[J]. Applied Energy, 2017, 193: 297-307. |
9 | L D Danny HARVEY. Rethinking electric vehicle subsidies, rediscovering energy efficiency[J]. Energy Policy, 2020, 146: 111760. |
10 | LIN Boqiang, WU Wei. The impact of electric vehicle penetration: A recursive dynamic CGE analysis of China[J]. Energy Economics, 2021, 94: 105086. |
11 | LAI Xin, ZHENG Yuejiu, SUN Tao. A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries[J]. Electrochimica Acta, 2018, 259: 566-577. |
12 | ZUBI Ghassan, Rodolfo DUFO-LOPEZ, CARVALHO Monica, et al. The lithium-ion battery: State of the art and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2018, 89: 292-308. |
13 | LE VARLET Thomas, SCHMIDT Oliver, GAMBHIR Ajay, et al. Comparative life cycle assessment of lithium-ion battery chemistries for residential storage[J]. Journal of Energy Storage, 2020, 28: 101230. |
14 | 刘兰胜. 磷酸铁锂电池应用现状及发展趋势[J]. 电池工业, 2021, 25(5): 263-265. |
LIU Lansheng. Application status and development trend of lithium iron phosphate battery[J]. Chinese Battery Industry, 2021, 25(5): 263-265. | |
15 | 涂康安. 锂离子电池三元正极材料现状及发展趋势[J]. 当代化工研究, 2021(17): 17-18. |
TU Kang’an. Present situation and development trend of ternary cathode materials for lithium-ion batteries[J]. Modern Chemical Research, 2021(17): 17-18. | |
26 | DUCOLI Serena, FAHIMI Ario, MOUSA Elsayed, et al. ESCAPE approach for the sustainability evaluation of spent lithium-ion batteries recovery: Dataset of 33 available technologies[J]. Data in Brief, 2022, 42: 108018. |
27 | FAHIMI Ario, DUCOLI Serena, FEDERICI Stefania, et al. Evaluation of the sustainability of technologies to recycle spent lithium-ion batteries, based on embodied energy and carbon footprint[J]. Journal of Cleaner Production, 2022, 338: 130493. |
28 | KALLITSIS Evangelos, KORRE Anna, KELSALL Geoff, et al. Environmental life cycle assessment of the production in China of lithium-ion batteries with nickel-cobalt-manganese cathodes utilising novel electrode chemistries[J]. Journal of Cleaner Production, 2020, 254: 120067. |
29 | REN Zhijun, LI Huajie, YAN Wenyi, et al. Comprehensive evaluation on production and recycling of lithium-ion batteries: A critical review[J]. Renewable and Sustainable Energy Reviews, 2023, 185: 113585. |
30 | Jan MATUŠTÍK, Vladimír KOČÍ. What is a footprint? A conceptual analysis of environmental footprint indicators[J]. Journal of Cleaner Production, 2021, 285: 124833. |
31 | 翟超颖, 龚晨. 碳足迹研究与应用现状:一个文献综述[J]. 海南金融, 2022(5): 39-50. |
ZHAI Chaoying, GONG Chen. Research and application of carbon footprint: A literature review[J]. Hainan Finance, 2022(5): 39-50. | |
32 | 计军平, 马晓明. 碳足迹的概念和核算方法研究进展[J]. 生态经济, 2011, 27(4): 76-80. |
JI Junping, MA Xiaoming. Review of carbon footprint: Definitions and accounting methods[J]. Ecological Economy, 2011, 27(4): 76-80. | |
33 | 王微, 林剑艺, 崔胜辉, 等. 碳足迹分析方法研究综述[J]. 环境科学与技术, 2010, 33(7): 71-78. |
WANG Wei, LIN Jianyi, CUI Shenghui, et al. An overview of carbon footprint analysis[J]. Environmental Science & Technology, 2010, 33(7): 71-78. | |
34 | 尚海洋, 宋妮妮. 碳足迹与水足迹的概念、研究方法和应对政策比较[J]. 水资源保护, 2018, 34(2): 15-21. |
SHANG Haiyang, SONG Nini. Carbon footprint and water footprint: Comparison of concepts, methods, and policy responses[J]. Water Resources Protection, 2018, 34(2): 15-21. | |
35 | 耿涌, 董会娟, 郗凤明, 等. 应对气候变化的碳足迹研究综述[J]. 中国人口·资源与环境, 2010, 20(10): 6-12. |
GENG Yong, DONG Huijuan, XI Fengming, et al. A review of the research on carbon footprint responding to climate change[J]. China Population, Resources and Environment, 2010, 20(10): 6-12. | |
36 | 刘含笑, 吴黎明, 林青阳, 等. 碳足迹评估技术及其在重点工业行业的应用[J]. 化工进展, 2023, 42(5): 2201-2218. |
LIU Hanxiao, WU Liming, LIN Qingyang, et al. Carbon footprint assessment technology and its application in key industries[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2201-2218. | |
37 | CURRAN Mary Ann. Life cycle assessment: A review of the methodology and its application to sustainability[J]. Current Opinion in Chemical Engineering, 2013, 2(3): 273-277. |
38 | FENNER Andriel Evandro, KIBERT Charles Joseph, Junghoon WOO, et al. The carbon footprint of buildings: A review of methodologies and applications[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 1142-1152. |
39 | KHANDELWAL Harshit, DHAR Hiya, THALLA Arun Kumar, et al. Application of life cycle assessment in municipal solid waste management: A worldwide critical review[J]. Journal of Cleaner Production, 2019, 209: 630-654. |
40 | FINKBEINER Matthias, INABA Atsushi, TAN Reginald, et al. The new international standards for life cycle assessment: ISO 14040 and ISO 14044[J]. The International Journal of Life Cycle Assessment, 2006, 11(2): 80-85. |
41 | SHEKHAR A R, PAREKH M H, POL V G. Worldwide ubiquitous utilization of lithium-ion batteries: What we have done, are doing, and could do safely once they are dead?[J]. Journal of Power Sources, 2022, 523: 231015. |
42 | ARSHAD Faiza, LIN Jiao, MANURKAR Nagesh, et al. Life cycle assessment of lithium-ion batteries: A critical review[J]. Resources, Conservation and Recycling, 2022, 180: 106164. |
43 | CRAWFORD Robert H, BONTINCK Paul-Antoine, STEPHAN André, et al. Hybrid life cycle inventory methods—A review[J]. Journal of Cleaner Production, 2018, 172: 1273-1288. |
44 | CHORDIA Mudit, Anders NORDELÖF, ELLINGSEN Linda Ager-Wick. Environmental life cycle implications of upscaling lithium-ion battery production[J]. The International Journal of Life Cycle Assessment, 2021, 26(10): 2024-2039. |
45 | BISHOP George, STYLES David, LENS Piet N L. Environmental performance comparison of bioplastics and petrochemical plastics: A review of life cycle assessment (LCA) methodological decisions[J]. Resources, Conservation and Recycling, 2021, 168: 105451. |
46 | PORZIO Jason, SCOWN Corinne D. Life-cycle assessment considerations for batteries and battery materials[J]. Advanced Energy Materials, 2021, 11(33): 2100771. |
47 | LAI Xin, CHEN Quanwei, TANG Xiaopeng, et al. Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: A lifespan perspective[J]. eTransportation, 2022, 12: 100169. |
48 | LIU Wenqiu, LIU He, LIU Wei, et al. Life cycle assessment of power batteries used in electric bicycles in China[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110596. |
49 | WEIMER Lucas, BRAUN Tobias, HEMDT Ansgar vom. Design of a systematic value chain for lithium-ion batteries from the raw material perspective[J]. Resources Policy, 2019, 64: 101473. |
50 | LIANG Yuhan, SU Jing, XI Beidou, et al. Life cycle assessment of lithium-ion batteries for greenhouse gas emissions[J]. Resources, Conservation and Recycling, 2017, 117: 285-293. |
51 | WANG Yixuan, YU Yajuan, HUANG Kai, et al. From the perspective of battery production: Energy-environment-economy (3E) analysis of lithium-ion batteries in China[J]. Sustainability, 2019, 11(24): 6941. |
52 | AMBROSE Hanjiro, KENDALL Alissa. Effects of battery chemistry and performance on the life cycle greenhouse gas intensity of electric mobility[J]. Transportation Research Part D: Transport and Environment, 2016, 47: 182-194. |
53 | SILVESTRI Luca, FORCINA Antonio, ARCESE Gabriella, et al. Recycling technologies of nickel-metal hydride batteries: An LCA based analysis[J]. Journal of Cleaner Production, 2020, 273: 123083. |
54 | YUDHISTIRA Ryutaka, KHATIWADA Dilip, SANCHEZ Fernando. A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage[J]. Journal of Cleaner Production, 2022, 358: 131999. |
55 | 殷仁述, 杨沿平, 杨阳, 等. 车用钛酸锂电池生命周期评价[J]. 中国环境科学, 2018, 38(6): 2371-2381. |
YIN Renshu, YANG Yanping, YANG Yang, et al. Life cycle assessment of the lithium titanate batteries used for electric vehicles[J]. China Environmental Science, 2018, 38(6): 2371-2381. | |
56 | ZACKRISSON Mats, FRANSSON Kristin, HILDENBRAND Jutta, et al. Life cycle assessment of lithium-air battery cells[J]. Journal of Cleaner Production, 2016, 135: 299-311. |
57 | MARQUES Pedro, GARCIA Rita, KULAY Luiz, et al. Comparative life cycle assessment of lithium-ion batteries for electric vehicles addressing capacity fade[J]. Journal of Cleaner Production, 2019, 229: 787-794. |
58 | KAWAMOTO Ryuji, MOCHIZUKI Hideo, MORIGUCHI Yoshihisa, et al. Estimation of CO2 emissions of internal combustion engine vehicle and battery electric vehicle using LCA[J]. Sustainability, 2019, 11(9): 2690. |
59 | BAUTISTA Sebastián P, WEIL Marcel, BAUMANN Manuel, et al. Prospective life cycle assessment of a model magnesium battery[J]. Energy Technology, 2021, 9(9): 2000964. |
60 | LAI Xin, HUANG Yunfeng, DENG Cong, et al. Sorting, regrouping, and echelon utilization of the large-scale retired lithium batteries: A critical review[J]. Renewable and Sustainable Energy Reviews, 2021, 146: 111162. |
61 | WANG Cong, CHEN Bo, YU Yajuan, et al. Carbon footprint analysis of lithium ion secondary battery industry: Two case studies from China[J]. Journal of Cleaner Production, 2017, 163: 241-251. |
62 | 李国煜. 梯次利用电池应用场景适用性分析[D]. 北京: 北京交通大学, 2020. |
LI Guoyu. Applicability analysis of echelon battery in application scenarios[D]. Beijing: Beijing Jiaotong University, 2020. | |
63 | LIU Yongtao, ZHANG Chunmei, HAO Zhuo, et al. Study on the life cycle assessment of automotive power batteries considering multi-cycle utilization[J]. Energies, 2023, 16(19): 6859. |
64 | 李建西, 宋小龙, 潘京津, 等. 退役三元锂电池循环利用系统减碳效率评估及优化分析[J]. 中国环境科学, 2023, 43(1): 488-496. |
LI Jianxi, SONG Xiaolong, PAN Jingjin, et al. Evaluation and optimization analysis of carbon reduction efficiency of retired NCM lithium battery recycling system[J]. China Environmental Science, 2023, 43(1): 488-496. | |
65 | SWAIN Basudev. Recovery and recycling of lithium: A review[J]. Separation and Purification Technology, 2017, 172: 388-403. |
66 | ZHOU Lifeng, YANG Dongrun, DU Tao, et al. The current process for the recycling of spent lithium ion batteries[J]. Frontiers in Chemistry, 2020, 8: 578044. |
67 | HARPER Gavin, SOMMERVILLE Roberto, KENDRICK Emma, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575: 75-86. |
68 | MARTINS Lívia Salles, GUIMARÃES Lucas Fonseca, BOTELHO Amilton Barbosa, et al. Electric car battery: An overview on global demand, recycling and future approaches towards sustainability[J]. Journal of Environmental Management, 2021, 295: 113091. |
69 | DU Kaidi, Edison Huixiang ANG, WU Xinglong, et al. Progresses in sustainable recycling technology of spent lithium-ion batteries[J]. Energy & Environmental Materials, 2022, 5(4): 1012-1036. |
70 | FAN Ersha, LI Li, WANG Zhenpo, et al. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects[J]. Chemical Reviews, 2020, 120(14): 7020-7063. |
71 | QUAN Jiawei, ZHAO Siqi, SONG Duanmei, et al. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies[J]. Science of the Total Environment, 2022, 819: 153105. |
72 | JIANG Songyan, HUA Hui, ZHANG Ling, et al. Environmental impacts of hydrometallurgical recycling and reusing for manufacturing of lithium-ion traction batteries in China[J]. Science of the Total Environment, 2022, 811: 152224. |
73 | PETERS Jens F, BAUMANN Manuel, ZIMMERMANN Benedikt, et al. The environmental impact of Li-ion batteries and the role of key parameters—A review[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 491-506. |
74 | ZHAO Shipu, YOU Fengqi. Comparative life-cycle assessment of Li-ion batteries through process-based and integrated hybrid approaches[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 5082-5094. |
75 | AICHBERGER Christian, JUNGMEIER Gerfried. Environmental life cycle impacts of automotive batteries based on a literature review[J]. Energies, 2020, 13(23): 6345. |
76 | ZHAO Enoch, WALKER Paul D, SURAWSKI Nic C, et al. Assessing the life cycle cumulative energy demand and greenhouse gas emissions of lithium-ion batteries[J]. Journal of Energy Storage, 2021, 43: 103193. |
77 | SHAFIQUE Muhammad, RAFIQ Muhammad, AZAM Anam, et al. Material flow analysis for end-of-life lithium-ion batteries from battery electric vehicles in the USA and China[J]. Resources, Conservation and Recycling, 2022, 178: 106061. |
78 | LI Pengwei, XIA Xiaoning, GUO Jia. A review of the life cycle carbon footprint of electric vehicle batteries[J]. Separation and Purification Technology, 2022, 296: 121389. |
79 | 程冬冬. 基于绿色发展理念的锂离子电池生命周期环境效益研究[D]. 广州: 广东工业大学, 2019. |
CHENG Dongdong. Study on environmental benefits of lithium-ion batteries in life cycle based on green development concept[D]. Guangzhou: Guangdong University of Technology, 2019. | |
80 | MELIN Hans Eric. Analysis of the climate impact of lithium-ion batteries and how to measure it[J]. Circular Energy Storage-Research and Consulting, 2019: 1-17. |
81 | LAI Xin, GU Huanghui, CHEN Quanwei, et al. Investigating greenhouse gas emissions and environmental impacts from the production of lithium-ion batteries in China[J]. Journal of Cleaner Production, 2022, 372: 133756. |
82 | HAO Han, MU Zhexuan, JIANG Shuhua, et al. GHG emissions from the production of lithium-ion batteries for electric vehicles in China[J]. Sustainability, 2017, 9(4): 504. |
83 | CIEZ Rebecca E, WHITACRE J F. Examining different recycling processes for lithium-ion batteries[J]. Nature Sustainability, 2019, 2: 148-156. |
84 | SUN Xin, LUO Xiaoli, ZHANG Zhan, et al. Life cycle assessment of lithium nickel cobalt manganese oxide (NCM) batteries for electric passenger vehicles[J]. Journal of Cleaner Production, 2020, 273: 123006. |
85 | DEGEN Florian, Marius SCHÜTTE. Life cycle assessment of the energy consumption and GHG emissions of state-of-the-art automotive battery cell production[J]. Journal of Cleaner Production, 2022, 330: 129798. |
86 | 张文林, 刘雪娇, 马青查, 等. 高镍锂离子电池三元材料NCM电解质的应用[J]. 化工进展, 2021, 40(4): 2175-2187. |
ZHANG Wenlin, LIU Xuejiao, MA Qingcha, et al. Application of NCM electrolyte for nickel-rich lithium ion battery[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2175-2187. | |
87 | 肖忠良, 周乘风, 宋刘斌, 等. 富镍锂离子电池三元材料NCM的研究进展[J]. 化工进展, 2020, 39(1): 216-223. |
XIAO Zhongliang, ZHOU Chengfeng, SONG Liubin, et al. Research progress of ternary material NCM for nickel-rich lithium ion battery[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 216-223. | |
88 | 陈鹏, 肖冠, 廖世军. 具有不同组成的镍钴锰三元材料的最新研究进展[J]. 化工进展, 2016, 35(1): 166-174. |
CHEN Peng, XIAO Guan, LIAO Shijun. Recent progress in the cobalt-nickel-manganese ternary cathode materials with various proportions of nickel to cobalt and manganese[J]. Chemical Industry and Engineering Progress, 2016, 35(1): 166-174. | |
89 | 吴涛, 叶嘉明, 李昌明, 等. 镍钴锰酸锂三元正极材料的研究进展[J]. 化工新型材料, 2020, 48(10): 6-9, 14. |
WU Tao, YE Jiaming, LI Changming, et al. Research progress of LiNi1- x- y Co x Mn y O2 ternary anode material[J]. New Chemical Materials, 2020, 48(10): 6-9, 14. | |
90 | MAISEL Franziska, NEEF Christoph, Frank MARSCHEIDER-WEIDEMANN, et al. A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles[J]. Resources, Conservation and Recycling, 2023, 192: 106920. |
91 | SATO Fernando Enzo Kenta, NAKATA Toshihiko. Recoverability analysis of critical materials from electric vehicle lithium-ion batteries through a dynamic fleet-based approach for Japan[J]. Sustainability, 2019, 12(1): 147. |
92 | SOMMERVILLE Roberto, ZHU Pengcheng, RAJAEIFAR Mohammad ALI, et al. A qualitative assessment of lithium ion battery recycling processes[J]. Resources, Conservation and Recycling, 2021, 165: 105219. |
93 | QIAO Qinyu, ZHAO Fuquan, LIU Zongwei, et al. Electric vehicle recycling in China: Economic and environmental benefits[J]. Resources, Conservation and Recycling, 2019, 140: 45-53. |
94 | LIU Chunwei, LIN Jiao, CAO Hongbin, et al. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review[J]. Journal of Cleaner Production, 2019, 228: 801-813. |
95 | YU Dawei, HUANG Zhu, MAKUZA Brian, et al. Pretreatment options for the recycling of spent lithium-ion batteries: A comprehensive review[J]. Minerals Engineering, 2021, 173: 107218. |
96 | Ronja WAGNER-WENZ, VAN ZUILICHEM Albert-Jan, Laura GÖLLNER-VÖLKER, et al. Recycling routes of lithium-ion batteries: A critical review of the development status, the process performance, and life-cycle environmental impacts[J]. MRS Energy & Sustainability, 2023, 10(1): 1-34. |
97 | KALLITSIS Evangelos, KORRE Anna, KELSALL Geoff H. Life cycle assessment of recycling options for automotive Li-ion battery packs[J]. Journal of Cleaner Production, 2022, 371: 133636. |
98 | 黎伟杰, 路蕾蕾, 李得科, 等. 锂离子电池拆解回收技术及进展[J]. 化工进展, 2024, 43(8): 4601-4613. |
LI Weijie, LU Leilei, LI Deke, et al. Lithium-ion battery disassembly and recycling technology and progress[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4601-4613. | |
99 | MOHR Marit, PETERS Jens F, BAUMANN Manuel, et al. Toward a cell-chemistry specific life cycle assessment of lithium-ion battery recycling processes[J]. Journal of Industrial Ecology, 2020, 24(6): 1310-1322. |
100 | YU Meihan, BAI Bo, XIONG Siqin, et al. Evaluating environmental impacts and economic performance of remanufacturing electric vehicle lithium-ion batteries[J]. Journal of Cleaner Production, 2021, 321: 128935. |
101 | LIU Zheng, SEDERHOLM Jarom G, LAN Kaiwei, et al. Life cycle assessment of hydrometallurgical recycling for cathode active materials[J]. Journal of Power Sources, 2023, 580: 233345. |
[1] | 梁宏成, 赵冬妮, 权银, 李敬妮, 胡欣怡. SEI膜形貌与结构对锂离子电池性能的影响[J]. 化工进展, 2024, 43(9): 5049-5062. |
[2] | 吴剑扬, 王汝娜, 陈耀, 申兰耀, 于永利, 蒋宁, 邱景义, 周恒辉. 锂离子电池高镍正极材料前体的制备工艺[J]. 化工进展, 2024, 43(9): 5079-5085. |
[3] | 李红彦, 谢书涵, 张燕如, 王永净, 王永好, 吕源财, 林春香, 李小娟. 废旧锂离子电池正极材料直接再生技术研究进展[J]. 化工进展, 2024, 43(9): 5207-5216. |
[4] | 黎伟杰, 路蕾蕾, 李得科, 王春航, 张祖铭, 谭强. 锂离子电池拆解回收技术及进展[J]. 化工进展, 2024, 43(8): 4601-4613. |
[5] | 潘涵婷, 徐洪涛, 许多, 罗祝清. 低温条件下基于相变材料的锂离子电池保温特性分析[J]. 化工进展, 2024, 43(8): 4333-4341. |
[6] | 孙悦, 邢宝林, 张耀杰, 冯来宏, 曾会会, 蒋振东, 徐冰, 贾建波, 张传祥, 谌伦建, 张越, 张文豪. B掺杂多孔碳纳米片的制备及其储锂性能[J]. 化工进展, 2024, 43(6): 3209-3220. |
[7] | 周铭贤, 叶小舟. 废锂离子电池碳热还原优先提锂工艺优化[J]. 化工进展, 2024, 43(4): 2174-2182. |
[8] | 吴剑扬, 申兰耀, 于永利, 王汝娜, 蒋宁, 杨新河, 邱景义, 周恒辉. 锂离子电池高镍正极材料的制备及性能优化[J]. 化工进展, 2024, 43(3): 1387-1394. |
[9] | 楚振普, 陈禹蒙, 李俊国, 孙庆轩, 刘科. 废旧锂离子电池负极石墨循环再生的研究进展[J]. 化工进展, 2024, 43(3): 1524-1534. |
[10] | 陈国徽, 王君雷, 李世龙, 李金宇, 徐运飞, 罗俊潇, 王昆. 火焰喷雾热解制备锂离子电池三元正极材料研究进展[J]. 化工进展, 2024, 43(2): 971-983. |
[11] | 李开鹏, 卢晓敏, 付姣, 裴丰, 陈鑫智, 廉培超. 氮掺杂石墨烯/黑磷量子点纳米复合材料的低温光催化法制备及其储锂性能[J]. 化工进展, 2024, 43(11): 6336-6343. |
[12] | 卜祥宁, 任玺冰, 童正, 倪梦茜, 倪超, 谢广元. 功率超声对废旧锂离子电池资源化回收利用过程的影响研究进展[J]. 化工进展, 2024, 43(1): 514-528. |
[13] | 王敬翰, 吕杰, 赵丁, 林文野, 宋文吉, 冯自平. 基于BP神经网络的电动汽车动力电池产热估计[J]. 化工进展, 2024, 43(1): 400-406. |
[14] | 于松民, 金洪波, 杨明虎, 余海峰, 江浩. 氟掺杂改性LiMn0.5Fe0.5PO4正极材料及其电化学性能[J]. 化工进展, 2024, 43(1): 302-309. |
[15] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 62
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 179
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |