化工进展 ›› 2022, Vol. 41 ›› Issue (3): 1677-1688.DOI: 10.16085/j.issn.1000-6613.2021-2272
• 集成耦合与优化技术 • 上一篇
收稿日期:
2021-11-08
修回日期:
2022-01-19
出版日期:
2022-03-23
发布日期:
2022-03-28
通讯作者:
张玉黎
作者简介:
张玉黎(1988—),女,博士,讲师,研究方向为储能、流化床反应器。E-mail:基金资助:
ZHANG Yuli1(), YE Mao2, XIAO Rui3, GE Lichao1
Received:
2021-11-08
Revised:
2022-01-19
Online:
2022-03-23
Published:
2022-03-28
Contact:
ZHANG Yuli
摘要:
垃圾焚烧发电耦合电转气技术制备合成天然气工艺可同时实现温室气体减排和大规模储能。由于垃圾发电效率低和甲烷化反应热利用效率不高,此工艺能效偏低。为了提升工艺能效,本文采用Aspen Plus软件对垃圾焚烧发电耦合电转气制备合成天然气过程进行了全流程模拟,基于能量平衡分析,提出了一种利用甲烷化反应热优化垃圾焚烧发电过程的工艺集成方法。针对这个优化过程,设计了一套由一级绝热固定床反应器和一级低温流化床反应器串联组成的甲烷化工艺。借助绝热固定床反应器出口高温气体提升主蒸汽参数、优化蒸汽循环过程,可将发电效率从22.05%提升至31.72%。流化床反应器低温操作有利于提升合成天然气品质,其内置换热管束作为补充蒸发受热面。此外,还考察了垃圾焚烧炉烟气再循环方式对整体工艺的影响,结果表明采用烟气干循环工艺时能效较高。以上结果对于提升工艺经济性和竞争力具有一定指导意义。
中图分类号:
张玉黎, 叶茂, 肖睿, 葛立超. 垃圾焚烧发电耦合电转气制备合成天然气工艺集成与优化[J]. 化工进展, 2022, 41(3): 1677-1688.
ZHANG Yuli, YE Mao, XIAO Rui, GE Lichao. Integration and optimization of a waste incineration power plant-power to gas hybrid system for SNG production[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1677-1688.
参数 | 数值 |
---|---|
入炉垃圾量/t·d-1 | 500 |
过量空气系数 | 1.7 |
一次风温度/℃ | 220 |
二次风温度/℃ | 160 |
排烟温度(省煤器出口)/℃ | 190 |
C燃尽率[ | 96.0 |
给水温度/℃ | 130 |
汽轮机排气压力/MPa | 0.007 |
凝汽器压力/MPa | 0.005 |
主蒸汽压力/MPa | 4.0 |
主蒸汽温度/℃ | 400 |
风机效率/% | 80.0 |
泵效率/% | 80.0 |
汽轮机效率/% | 80.0 |
发电机效率/% | 99.0 |
机械效率/% | 99.0 |
表1 典型垃圾焚烧发电厂运行参数
参数 | 数值 |
---|---|
入炉垃圾量/t·d-1 | 500 |
过量空气系数 | 1.7 |
一次风温度/℃ | 220 |
二次风温度/℃ | 160 |
排烟温度(省煤器出口)/℃ | 190 |
C燃尽率[ | 96.0 |
给水温度/℃ | 130 |
汽轮机排气压力/MPa | 0.007 |
凝汽器压力/MPa | 0.005 |
主蒸汽压力/MPa | 4.0 |
主蒸汽温度/℃ | 400 |
风机效率/% | 80.0 |
泵效率/% | 80.0 |
汽轮机效率/% | 80.0 |
发电机效率/% | 99.0 |
机械效率/% | 99.0 |
参数 | 数值 |
---|---|
水分/% | 46.50 |
灰分/% | 20.00 |
固定碳/% | 8.00 |
挥发分/% | 25.50 |
C/% | 20.23 |
H/% | 2.88 |
O/% | 9.48 |
N/% | 0.47 |
S/% | 0.02 |
Cl/% | 0.42 |
收到基低位热值/kJ·kg-1 | 7000 |
表2 入炉垃圾成分分析(收到基,质量分数)[25]
参数 | 数值 |
---|---|
水分/% | 46.50 |
灰分/% | 20.00 |
固定碳/% | 8.00 |
挥发分/% | 25.50 |
C/% | 20.23 |
H/% | 2.88 |
O/% | 9.48 |
N/% | 0.47 |
S/% | 0.02 |
Cl/% | 0.42 |
收到基低位热值/kJ·kg-1 | 7000 |
序号 | 名称 | 流量/kg·s-1 | 压力/MPa | 温度/℃ | 序号 | 名称 | 流量/kg·s-1 | 压力/MPa | 温度/℃ |
---|---|---|---|---|---|---|---|---|---|
1 | 垃圾进料 | 5.79 | 0.101 | 25 | A4 | 过热器进口(5#,汽侧) | 13.43 | 4.500 | 257 |
2 | 一次风进料 | 20.51 | 0.101 | 25 | A5 | 空预器进口(2#,汽侧) | 0.58 | 4.500 | 257 |
3 | 一次风机出口 | 20.51 | 0.120 | 43 | A6 | 过热器出口(5#,汽侧) | 13.43 | 4.000 | 400 |
4 | 空预器出口(1#,风侧) | 20.51 | 0.113 | 170 | A7 | 汽轮机进口 | 13.43 | 3.900 | 395 |
5 | 空预器出口(2#,风侧) | 20.51 | 0.106 | 220 | A8 | 一次抽汽 | 1.42 | 1.300 | 271 |
6 | 二次风进料 | 8.55 | 0.101 | 25 | A8-1 | 空预器进口(1#,汽侧) | 1.03 | 1.300 | 271 |
7 | 二次风机出口 | 8.55 | 0.120 | 43 | A8-2 | 空预器进口(3#,汽侧) | 0.39 | 1.300 | 271 |
8 | 空预器出口(3#,风侧) | 8.55 | 0.106 | 160 | A9 | 二次抽汽 | 1.58 | 0.470 | 176 |
9 | 炉膛出口烟气 | 33.64 | 0.100 | 1050 | A10 | 三次抽汽 | 0.35 | 0.030 | 69 |
10 | 氨水 | 0.07 | 0.110 | 25 | A11 | 汽轮机排汽 | 10.09 | 0.007 | 39 |
11 | 脱硝后烟气 | 33.71 | 0.100 | 1045 | A12 | 凝汽器出口 | 10.43 | 0.005 | 33 |
12 | 省煤器出口(6#,烟侧) | 33.71 | 0.096 | 190 | A13 | 凝结水泵出口 | 10.43 | 0.470 | 33 |
13 | 烟气冷却器出口 | 33.71 | 0.096 | 150 | A14 | 低加出口(凝结水侧) | 10.43 | 0.370 | 50 |
14 | NaHCO3 | 0.15 | 0.110 | 25 | A15 | 低加出口(汽侧) | 0.35 | 0.003 | 69 |
15 | 脱硫后烟气 | 33.73 | 0.094 | 150 | A16 | 除氧器出口 | 14.01 | 0.270 | 130 |
A1 | 给水 | 14.01 | 5.000 | 130 | A17 | 空预器出口(1#,汽侧) | 1.03 | 1.100 | 86 |
A2 | 省煤器出口(6#,水侧) | 14.01 | 4.500 | 257 | A18 | 空预器出口(2#,汽侧) | 0.58 | 4.300 | 224 |
A3 | 蒸发面出口(4#,汽侧) | 14.01 | 4.500 | 257 | A19 | 空预器出口(3#,汽侧) | 0.39 | 1.100 | 77 |
表3 图3工艺流程模拟结果
序号 | 名称 | 流量/kg·s-1 | 压力/MPa | 温度/℃ | 序号 | 名称 | 流量/kg·s-1 | 压力/MPa | 温度/℃ |
---|---|---|---|---|---|---|---|---|---|
1 | 垃圾进料 | 5.79 | 0.101 | 25 | A4 | 过热器进口(5#,汽侧) | 13.43 | 4.500 | 257 |
2 | 一次风进料 | 20.51 | 0.101 | 25 | A5 | 空预器进口(2#,汽侧) | 0.58 | 4.500 | 257 |
3 | 一次风机出口 | 20.51 | 0.120 | 43 | A6 | 过热器出口(5#,汽侧) | 13.43 | 4.000 | 400 |
4 | 空预器出口(1#,风侧) | 20.51 | 0.113 | 170 | A7 | 汽轮机进口 | 13.43 | 3.900 | 395 |
5 | 空预器出口(2#,风侧) | 20.51 | 0.106 | 220 | A8 | 一次抽汽 | 1.42 | 1.300 | 271 |
6 | 二次风进料 | 8.55 | 0.101 | 25 | A8-1 | 空预器进口(1#,汽侧) | 1.03 | 1.300 | 271 |
7 | 二次风机出口 | 8.55 | 0.120 | 43 | A8-2 | 空预器进口(3#,汽侧) | 0.39 | 1.300 | 271 |
8 | 空预器出口(3#,风侧) | 8.55 | 0.106 | 160 | A9 | 二次抽汽 | 1.58 | 0.470 | 176 |
9 | 炉膛出口烟气 | 33.64 | 0.100 | 1050 | A10 | 三次抽汽 | 0.35 | 0.030 | 69 |
10 | 氨水 | 0.07 | 0.110 | 25 | A11 | 汽轮机排汽 | 10.09 | 0.007 | 39 |
11 | 脱硝后烟气 | 33.71 | 0.100 | 1045 | A12 | 凝汽器出口 | 10.43 | 0.005 | 33 |
12 | 省煤器出口(6#,烟侧) | 33.71 | 0.096 | 190 | A13 | 凝结水泵出口 | 10.43 | 0.470 | 33 |
13 | 烟气冷却器出口 | 33.71 | 0.096 | 150 | A14 | 低加出口(凝结水侧) | 10.43 | 0.370 | 50 |
14 | NaHCO3 | 0.15 | 0.110 | 25 | A15 | 低加出口(汽侧) | 0.35 | 0.003 | 69 |
15 | 脱硫后烟气 | 33.73 | 0.094 | 150 | A16 | 除氧器出口 | 14.01 | 0.270 | 130 |
A1 | 给水 | 14.01 | 5.000 | 130 | A17 | 空预器出口(1#,汽侧) | 1.03 | 1.100 | 86 |
A2 | 省煤器出口(6#,水侧) | 14.01 | 4.500 | 257 | A18 | 空预器出口(2#,汽侧) | 0.58 | 4.300 | 224 |
A3 | 蒸发面出口(4#,汽侧) | 14.01 | 4.500 | 257 | A19 | 空预器出口(3#,汽侧) | 0.39 | 1.100 | 77 |
成分 | 质量流量/t·d-1 | |
---|---|---|
烟气干循环 | 烟气湿循环 | |
O2 | 24.81 | 58.90 |
N2 | 2.37 | 2.36 |
H2O | 10.83 | 11.77 |
CO2 | 358.67 | 358.67 |
表4 进入电转气单元烟气主要组成成分
成分 | 质量流量/t·d-1 | |
---|---|---|
烟气干循环 | 烟气湿循环 | |
O2 | 24.81 | 58.90 |
N2 | 2.37 | 2.36 |
H2O | 10.83 | 11.77 |
CO2 | 358.67 | 358.67 |
名称 | 脱氧反应器进口烟气 | 脱氧反应器进口氢气 | 脱氧反应器出口 | 固定床反应器进口 | 固定床反应器出口 | 流化床反应器进口 | 流化床反应器出口 |
---|---|---|---|---|---|---|---|
物流序号 | 1 | 2 | 4 | 6 | 7 | 14 | 15 |
温度/℃ | 144 | 80 | 901 | 305 | 640 | 300 | 330 |
压力/MPa | 2.2 | 2.2 | 2.2 | 2.1 | 2.0 | 1.7 | 1.7 |
CH4/% | 0 | 0 | 0 | 31.30 | 45.71 | 57.31 | 79.42 |
H2/% | 0 | 100 | 3.62 | 52.72 | 26.09 | 32.71 | 2.25 |
CO2/% | 89.83 | 0 | 79.77 | 11.80 | 4.51 | 5.65 | 0.52 |
CO/% | 0 | 0 | 0 | 1.82 | 2.65 | 3.33 | 微量 |
H2O/% | 0.57 | 0 | 15.79 | 1.90 | 20.49 | 0.32 | 16.98 |
N2+其他/% | 0.93 | 0 | 0.82 | 0.73 | 0.55 | 0.69 | 0.83 |
O2/% | 8.55 | 0 | 0 | 0 | 0 | 0 | 0 |
表5 电转气过程物流组成(烟气干循环,对应图5,体积分数)
名称 | 脱氧反应器进口烟气 | 脱氧反应器进口氢气 | 脱氧反应器出口 | 固定床反应器进口 | 固定床反应器出口 | 流化床反应器进口 | 流化床反应器出口 |
---|---|---|---|---|---|---|---|
物流序号 | 1 | 2 | 4 | 6 | 7 | 14 | 15 |
温度/℃ | 144 | 80 | 901 | 305 | 640 | 300 | 330 |
压力/MPa | 2.2 | 2.2 | 2.2 | 2.1 | 2.0 | 1.7 | 1.7 |
CH4/% | 0 | 0 | 0 | 31.30 | 45.71 | 57.31 | 79.42 |
H2/% | 0 | 100 | 3.62 | 52.72 | 26.09 | 32.71 | 2.25 |
CO2/% | 89.83 | 0 | 79.77 | 11.80 | 4.51 | 5.65 | 0.52 |
CO/% | 0 | 0 | 0 | 1.82 | 2.65 | 3.33 | 微量 |
H2O/% | 0.57 | 0 | 15.79 | 1.90 | 20.49 | 0.32 | 16.98 |
N2+其他/% | 0.93 | 0 | 0.82 | 0.73 | 0.55 | 0.69 | 0.83 |
O2/% | 8.55 | 0 | 0 | 0 | 0 | 0 | 0 |
名称 | 脱氧反应器进口烟气 | 脱氧反应器进口氢气 | 脱氧反应器出口 | 固定床反应器进口 | 固定床反应器出口 | 流化床反应器进口 | 流化床反应器出口 |
---|---|---|---|---|---|---|---|
物流序号 | 1 | 2 | 4 | 6 | 7 | 14 | 15 |
温度/℃ | 144 | 80 | 1558 | 285 | 640 | 300 | 330 |
压力/MPa | 2.2 | 2.2 | 2.2 | 2.1 | 2.0 | 1.7 | 1.7 |
CH4/% | 0 | 0 | 0 | 26.79 | 40.90 | 53.72 | 77.28 |
H2/% | 0 | 100 | 5.06 | 54.41 | 27.10 | 35.6 | 2.34 |
CO2/% | 80.35 | 0 | 64.57 | 12.34 | 4.86 | 6.38 | 0.55 |
CO/% | 0 | 0 | 0.00 | 1.66 | 2.53 | 3.32 | 微量 |
H2O/% | 0.67 | 0 | 29.70 | 4.37 | 24.11 | 0.32 | 19.03 |
N2+其他/% | 0.83 | 0 | 0.67 | 0.42 | 0.50 | 0.66 | 0.81 |
O2/% | 18.15 | 0 | 0 | 0 | 0 | 0 | 0 |
表6 电转气过程物流组成(烟气湿循环,对应图5,体积分数)
名称 | 脱氧反应器进口烟气 | 脱氧反应器进口氢气 | 脱氧反应器出口 | 固定床反应器进口 | 固定床反应器出口 | 流化床反应器进口 | 流化床反应器出口 |
---|---|---|---|---|---|---|---|
物流序号 | 1 | 2 | 4 | 6 | 7 | 14 | 15 |
温度/℃ | 144 | 80 | 1558 | 285 | 640 | 300 | 330 |
压力/MPa | 2.2 | 2.2 | 2.2 | 2.1 | 2.0 | 1.7 | 1.7 |
CH4/% | 0 | 0 | 0 | 26.79 | 40.90 | 53.72 | 77.28 |
H2/% | 0 | 100 | 5.06 | 54.41 | 27.10 | 35.6 | 2.34 |
CO2/% | 80.35 | 0 | 64.57 | 12.34 | 4.86 | 6.38 | 0.55 |
CO/% | 0 | 0 | 0.00 | 1.66 | 2.53 | 3.32 | 微量 |
H2O/% | 0.67 | 0 | 29.70 | 4.37 | 24.11 | 0.32 | 19.03 |
N2+其他/% | 0.83 | 0 | 0.67 | 0.42 | 0.50 | 0.66 | 0.81 |
O2/% | 18.15 | 0 | 0 | 0 | 0 | 0 | 0 |
名称 | 烟气干循环 | 烟气湿循环 | DB65/T 3664—2014 煤制天然气技术指标 |
---|---|---|---|
CH4/% | 95.54 | 95.32 | ≥95.0 |
H2/% | 2.70 | 2.88 | ≤4.0 |
CO2/% | 0.63 | 0.67 | ≤2.0 |
CO/% | 3.10×10-3 | 3.07×10-3 | ≤0.5 |
高位热值/MJ·m-3(标准状况) | 38.39 | 38.32 | ≥31.4 |
表7 SNG成分分析(体积分数)
名称 | 烟气干循环 | 烟气湿循环 | DB65/T 3664—2014 煤制天然气技术指标 |
---|---|---|---|
CH4/% | 95.54 | 95.32 | ≥95.0 |
H2/% | 2.70 | 2.88 | ≤4.0 |
CO2/% | 0.63 | 0.67 | ≤2.0 |
CO/% | 3.10×10-3 | 3.07×10-3 | ≤0.5 |
高位热值/MJ·m-3(标准状况) | 38.39 | 38.32 | ≥31.4 |
序号 | 流量/kg·s-1 | 压强 /MPa | 温度 /℃ | 序号 | 流量/kg·s-1 | 压强 /MPa | 温度 /℃ | 序号 | 流量/kg·s-1 | 压强 /MPa | 温度 /℃ | 序号 | 流量/kg·s-1 | 压强 /MPa | 温度 /℃ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5.79 | 0.101 | 25 | 19 | 24.28 | 0.093 | 100 | A13 | 17.59 | 2.400 | 400 | B7 | 13.27 | 2.000 | 640 |
2 | 4.05 | 0.112 | 80 | 20 | 24.28 | 1.120 | 119 | A14 | 17.59 | 2.300 | 395 | B8 | 13.27 | 1.950 | 492 |
3 | 28.34 | 0.108 | 113 | A1 | 19.04 | 11.200 | 132 | A15 | 2.15 | 0.470 | 227 | B9 | 13.27 | 1.900 | 330 |
4 | 28.34 | 0.106 | 220 | A2 | 14.92 | 11.200 | 132 | A16 | 0.49 | 0.030 | 69 | B10 | 13.27 | 1.850 | 138 |
5 | 20.00 | 0.106 | 220 | A3 | 4.12 | 11.200 | 132 | A17 | 14.95 | 0.007 | 39 | B11 | 13.27 | 1.800 | 35 |
6 | 8.34 | 0.106 | 220 | A3-1 | 3.11 | 11.200 | 132 | A18 | 15.44 | 0.005 | 33 | B12 | 9.92 | 1.750 | 35 |
7 | 32.92 | 0.100 | 1050 | A3-2 | 1.01 | 11.200 | 132 | A19 | 15.44 | 0.470 | 33 | B13 | 8.00 | 1.750 | 35 |
8 | 0.01 | 0.100 | 160 | A4 | 14.92 | 10.700 | 316 | A20 | 15.44 | 0.270 | 50 | B14 | 1.92 | 1.750 | 35 |
9 | 32.92 | 0.100 | 1050 | A5 | 14.92 | 10.700 | 316 | A21 | 0.49 | 0.030 | 69 | B15 | 1.92 | 1.700 | 300 |
10 | 32.92 | 0.096 | 190 | A6 | 17.59 | 10.700 | 316 | A22 | 19.04 | 0.270 | 130 | B16 | 1.92 | 1.700 | 330 |
11 | 32.92 | 0.096 | 150 | A7 | 1.44 | 10.700 | 316 | A23 | 1.44 | 10.400 | 148 | B17 | 1.92 | 1.650 | 116 |
12 | 0.15 | 0.101 | 25 | A8 | 4.12 | 10.700 | 316 | B1 | 4.48 | 2.200 | 144 | B18 | 1.92 | 1.600 | 35 |
13 | 32.94 | 0.094 | 150 | A8-1 | 3.11 | 10.700 | 316 | B2 | 0.04 | 2.200 | 80 | B19 | 1.57 | 1.550 | 35 |
14 | 32.94 | 0.094 | 112 | A8-2 | 1.01 | 10.700 | 316 | B3 | 0.75 | 2.200 | 80 | B20 | 1.57 | 8.000 | 35 |
15 | 32.94 | 0.094 | 40 | A9 | 17.59 | 10.500 | 379 | B4 | 4.52 | 2.200 | 901 | B21 | 8.00 | 2.250 | 60 |
16 | 28.89 | 0.094 | 40 | A10 | 17.59 | 10.000 | 510 | B5 | 4.52 | 2.150 | 405 | B22 | 8.75 | 2.200 | 66 |
17 | 4.59 | 0.094 | 40 | A11 | 17.59 | 9.900 | 505 | B6 | 13.27 | 2.100 | 305 | B23 | 8.75 | 2.150 | 290 |
18 | 24.28 | 0.094 | 40 | A12 | 17.59 | 2.500 | 327 |
表8 图7工艺流程物流平衡
序号 | 流量/kg·s-1 | 压强 /MPa | 温度 /℃ | 序号 | 流量/kg·s-1 | 压强 /MPa | 温度 /℃ | 序号 | 流量/kg·s-1 | 压强 /MPa | 温度 /℃ | 序号 | 流量/kg·s-1 | 压强 /MPa | 温度 /℃ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5.79 | 0.101 | 25 | 19 | 24.28 | 0.093 | 100 | A13 | 17.59 | 2.400 | 400 | B7 | 13.27 | 2.000 | 640 |
2 | 4.05 | 0.112 | 80 | 20 | 24.28 | 1.120 | 119 | A14 | 17.59 | 2.300 | 395 | B8 | 13.27 | 1.950 | 492 |
3 | 28.34 | 0.108 | 113 | A1 | 19.04 | 11.200 | 132 | A15 | 2.15 | 0.470 | 227 | B9 | 13.27 | 1.900 | 330 |
4 | 28.34 | 0.106 | 220 | A2 | 14.92 | 11.200 | 132 | A16 | 0.49 | 0.030 | 69 | B10 | 13.27 | 1.850 | 138 |
5 | 20.00 | 0.106 | 220 | A3 | 4.12 | 11.200 | 132 | A17 | 14.95 | 0.007 | 39 | B11 | 13.27 | 1.800 | 35 |
6 | 8.34 | 0.106 | 220 | A3-1 | 3.11 | 11.200 | 132 | A18 | 15.44 | 0.005 | 33 | B12 | 9.92 | 1.750 | 35 |
7 | 32.92 | 0.100 | 1050 | A3-2 | 1.01 | 11.200 | 132 | A19 | 15.44 | 0.470 | 33 | B13 | 8.00 | 1.750 | 35 |
8 | 0.01 | 0.100 | 160 | A4 | 14.92 | 10.700 | 316 | A20 | 15.44 | 0.270 | 50 | B14 | 1.92 | 1.750 | 35 |
9 | 32.92 | 0.100 | 1050 | A5 | 14.92 | 10.700 | 316 | A21 | 0.49 | 0.030 | 69 | B15 | 1.92 | 1.700 | 300 |
10 | 32.92 | 0.096 | 190 | A6 | 17.59 | 10.700 | 316 | A22 | 19.04 | 0.270 | 130 | B16 | 1.92 | 1.700 | 330 |
11 | 32.92 | 0.096 | 150 | A7 | 1.44 | 10.700 | 316 | A23 | 1.44 | 10.400 | 148 | B17 | 1.92 | 1.650 | 116 |
12 | 0.15 | 0.101 | 25 | A8 | 4.12 | 10.700 | 316 | B1 | 4.48 | 2.200 | 144 | B18 | 1.92 | 1.600 | 35 |
13 | 32.94 | 0.094 | 150 | A8-1 | 3.11 | 10.700 | 316 | B2 | 0.04 | 2.200 | 80 | B19 | 1.57 | 1.550 | 35 |
14 | 32.94 | 0.094 | 112 | A8-2 | 1.01 | 10.700 | 316 | B3 | 0.75 | 2.200 | 80 | B20 | 1.57 | 8.000 | 35 |
15 | 32.94 | 0.094 | 40 | A9 | 17.59 | 10.500 | 379 | B4 | 4.52 | 2.200 | 901 | B21 | 8.00 | 2.250 | 60 |
16 | 28.89 | 0.094 | 40 | A10 | 17.59 | 10.000 | 510 | B5 | 4.52 | 2.150 | 405 | B22 | 8.75 | 2.200 | 66 |
17 | 4.59 | 0.094 | 40 | A11 | 17.59 | 9.900 | 505 | B6 | 13.27 | 2.100 | 305 | B23 | 8.75 | 2.150 | 290 |
18 | 24.28 | 0.094 | 40 | A12 | 17.59 | 2.500 | 327 |
1 | DING Yin, ZHAO Jun, LIU Jiawei, et al. A review of China's municipal solid waste (MSW) and comparison with international regions: management and technologies in treatment and resource utilization[J]. Journal of Cleaner Production, 2021, 293: 126144. |
2 | GU Binxian, JIANG Suqin, WANG Haikun, et al. Characterization, quantification and management of China's municipal solid waste in spatiotemporal distributions: a review[J]. Waste Management, 2017, 61: 67-77. |
3 | CHENG Hefa, HU Yuanan. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China[J]. Bioresource Technology, 2010, 101(11): 3816-3824. |
4 | KHAN S, ANJUM R, RAZA S T, et al. Technologies for municipal solid waste management: current status, challenges, and future perspectives[J]. Chemosphere, 2022, 288: 132403. |
5 | NEUWAHL F, CUSANO G, BENAVIDES J G, et al. Best available techniques (BAT) reference document for waste incineration[R]. Publications Office of the European Union: Luxembourg, 2019. |
6 | CHRISTENSEN T H, BISINELLA V. Climate change impacts of introducing carbon capture and utilisation (CCU) in waste incineration[J]. Waste Management, 2021, 126: 754-770. |
7 | LEE S H, THEMELIS N J, CASTALDI M J. High-temperature corrosion in waste-to-energy boilers[J]. Journal of Thermal Spray Technology, 2007, 16(1): 104-110. |
8 | PHONGPHIPHAT A, RYU C, YANG Y B, et al. Investigation into high-temperature corrosion in a large-scale municipal waste-to-energy plant[J]. Corrosion Science, 2010, 52(12): 3861-3874. |
9 | LOMBARDI L, CARNEVALE E, CORTI A. A review of technologies and performances of thermal treatment systems for energy recovery from waste[J]. Waste Management, 2015, 37: 26-44. |
10 | GÖTZ M, LEFEBVRE J, MÖRS F, et al. Renewable power-to-gas: a technological and economic review[J]. Renewable Energy, 2016, 85: 1371-1390. |
11 | ZHANG Xingping, ZHANG Youzhong. Environment-friendly and economical scheduling optimization for integrated energy system considering power-to-gas technology and carbon capture power plant[J]. Journal of Cleaner Production, 2020, 276: 123348. |
12 | ZHANG Xiaojin, BAUER C, MUTEL C L, et al. Life cycle assessment of power-to-gas: approaches, system variations and their environmental implications[J]. Applied Energy, 2017, 190: 326-338. |
13 | BAILERA M, LISBONA P, ROMEO L M. Power to gas-oxyfuel boiler hybrid systems[J]. International Journal of Hydrogen Energy, 2015, 40(32): 10168-10175. |
14 | BAILERA M, LISBONA P, ROMEO L M, et al. Power to gas-biomass oxycombustion hybrid system: energy integration and potential applications[J]. Applied Energy, 2016, 167: 221-229. |
15 | BAILERA M, LISBONA P, PEÑA B, et al. Energy storage[M]. Cham: Springer International Publishing, 2020: 40. |
16 | RISPOLI A L, VERDONE N, VILARDI G. Green fuel production by coupling plastic waste oxy-combustion and PtG technologies: economic, energy, exergy and CO2-cycle analysis[J]. Fuel Processing Technology, 2021, 221: 106922. |
17 | RÖNSCH S, SCHNEIDER J, MATTHISCHKE S, et al. Review on methanation—From fundamentals to current projects[J]. Fuel, 2016, 166: 276-296. |
18 | BOGALE W, VIGANÒ F. A preliminary comparative performance evaluation of highly efficient waste-to-energy plants[J]. Energy Procedia, 2014, 45: 1315-1324. |
19 | CHEN Heng, WU Yunyun, ZENG Yuchuan, et al. Performance analysis of a solar-aided waste-to-energy system based on steam reheating[J]. Applied Thermal Engineering, 2021, 185: 116445. |
20 | KOYTSOUMPA E I, KARELLAS S. Equilibrium and kinetic aspects for catalytic methanation focusing on CO2 derived substitute natural gas (SNG)[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 536-550. |
21 | ZHOU X, LIU H, FU L, et al. Experimental study of natural gas combustion flue gas waste heat recovery system based on direct contact heat transfer and absorption heat pump[C]//Proceedings of ASME 2013 7th International Conference on Energy Sustainability Collocated With the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology, Minneapolis, Minnesota, USA. 2013. |
22 | 陈琪华, 何育恒, 李茂东, 等. 垃圾焚烧发电锅炉蒸汽空气预热器经济性分析及热力系统优化[J]. 工业锅炉, 2019(4): 19-20, 28. |
CHEN Qihua, HE Yuheng, LI Maodong, et al. Economic analysis and thermodynamic optimization of steam-air preheater on waste incineration boiler[J]. Industrial Boilers, 2019(4): 19-20, 28. | |
23 | CHEN Heng, ZHANG Meiyan, WU Yunyun, et al. Design and performance evaluation of a new waste incineration power system integrated with a supercritical CO2 power cycle and a coal-fired power plant[J]. Energy Conversion and Management, 2020, 210: 112715. |
24 | DING Guangchao, HE Boshu, CAO Yang, et al. Process simulation and optimization of municipal solid waste fired power plant with oxygen/carbon dioxide combustion for near zero carbon dioxide emission[J]. Energy Conversion and Management, 2018, 157: 157-168. |
25 | XIA Zihong, SHAN Peng, CHEN Caixia, et al. A two-fluid model simulation of an industrial moving grate waste incinerator[J]. Waste Management, 2020, 104: 183-191. |
26 | 韩中合, 韩旭, 李鹏. 汽轮机内湿汽损失定量评估研究进展[J]. 热力发电, 2016, 45(2): 1-6. |
HAN Zhonghe, HAN Xu, LI Peng. Progress of quantitative evaluation of wetness losses in steam turbine[J]. Thermal Power Generation, 2016, 45(2): 1-6. | |
27 | BUTTLER A, SPLIETHOFF H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440-2454. |
[1] | 张东, 刘鹏飞, 刘春阳, 侯刚, 惠博, 安周建. 太阳能PV/T光储直驱热电联产系统性能[J]. 化工进展, 2023, 42(6): 2895-2903. |
[2] | 马源, 肖晴月, 岳君容, 崔彦斌, 刘姣, 许光文. CeO2-Al2O3复合载体负载Ni基催化剂催化CO x 共甲烷化性能[J]. 化工进展, 2023, 42(5): 2421-2428. |
[3] | 张巍, 王锐, 缪平, 田戈. 全球可再生能源电转甲烷的应用[J]. 化工进展, 2023, 42(3): 1257-1269. |
[4] | 纪子柯, 包成. CO选择性甲烷化的研究进展[J]. 化工进展, 2022, 41(1): 120-132. |
[5] | 王国栋, 郭亚飞, 李佳媛, 姚睿璇, 孙健, 赵传文. 碱/碱土金属修饰Ni基催化剂的CO2吸附与甲烷化性能[J]. 化工进展, 2021, 40(12): 6925-6933. |
[6] | 宫万福,闫兵海. 新型VESTA甲烷化工艺路线探究[J]. 化工进展, 2020, 39(1): 112-118. |
[7] | 孙漪清, 金保昇, 董新新, 张文杰, 王金德. ZrO2-Al2O3复合载体负载Ni基催化剂CO x 甲烷化性能[J]. 化工进展, 2019, 38(07): 3176-3184. |
[8] | 李春启. 新型合成气甲烷化催化剂La2O3-ZrO2-Ni /Al2O3的制备与性能[J]. 化工进展, 2019, 38(06): 2776-2783. |
[9] | 岳永强, 刘永卓, 常国璋, 郭庆杰. 热解气氛与温度对褐煤半焦“一步法”甲烷化活性的影响[J]. 化工进展, 2017, 36(10): 3690-3696. |
[10] | 杨霞, 秦绍东, 李加波, 孙守理. 载体制备方法对MoO3/ZrO2耐硫甲烷化催化剂的影响[J]. 化工进展, 2017, 36(04): 1288-1293. |
[11] | 李春启. 基于动力学模型的合成气完全甲烷化回路系统模拟分析[J]. 化工进展, 2017, 36(01): 146-155. |
[12] | 杨霞, 秦绍东, 李加波, 孙守理. ZrO2添加对MoO3/Al2O3催化剂耐硫甲烷化性能的影响[J]. 化工进展, 2016, 35(S2): 179-182. |
[13] | 张旭, 王子宗, 陈建峰. 煤基合成气甲烷化用镍基催化剂失活热力学和抗失活预测[J]. 化工进展, 2016, 35(11): 3511-3518. |
[14] | 向心怡, 陈小光, 戴若彬, 王玉, 周伟竹, 徐垚. 厌氧膨胀颗粒污泥床反应器的国内研究与应用现状[J]. 化工进展, 2016, 35(01): 18-25. |
[15] | 崔凯凯, 周桂林, 谢红梅. 二氧化碳甲烷化催化剂的研究进展[J]. 化工进展, 2015, 34(3): 724-730,737. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |