1 |
郭潇东, 毛玉娇, 刘相洋, 等. Ni/Sm2O3—CeO2/Al2O3催化剂氧空位对二氧化碳低温甲烷化的影响 [J]. 化工进展, 2024, 43(4):1840-1850.
|
|
GUO Xiaodong, MAO Yujiao, LIU Xiangyang, et al. Effect of oxygen vacancies in Ni/Sm2O3-CeO2/Al2O3 catalyst on CO2 methanation at low temperature[J]. Chemical Industry and Engineering Progress, 2024, 43(4):1840-1850.
|
2 |
马源, 肖晴月, 岳君容, 等. CeO2-Al2O3复合载体负载Ni基催化剂催化CO x 共甲烷化性能[J]. 化工进展, 2023, 42(5): 2421-2428.
|
|
MA Yuan, XIAO Qingyue, YUE Junrong, et al. CO x co-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428.
|
3 |
LI Mengze, Gabriel BEKÖ, ZANNONI Nora, et al. Human metabolic emissions of carbon dioxide and methane and their implications for carbon emissions[J]. Science of the Total Environment, 2022, 833: 155241.
|
4 |
BARAJ Erlisa, Stanislav VAGASKÝ, Tomáš HLINČÍK, et al. Reaction mechanisms of carbon dioxide methanation[J]. Chemical Papers, 2016, 70(4): 395-403.
|
5 |
BORDET Alexis, LACROIX Lise-Marie, FAZZINI Pier-Francesco, et al. Magnetically induced continuous CO2 hydrogenation using composite iron carbide nanoparticles of exceptionally high heating power[J]. Angewandte Chemie International Edition, 2016, 55(51): 15894-15898.
|
6 |
ASENSIO Juan M, MIGUEL Ana B, FAZZINI Pier Francesco. Hydrodeoxygenation using magnetic induction: High-temperature heterogeneous catalysis in solution[J]. Angewandte Chemie, 2019, 33(131): 11428-11432.
|
7 |
MARTÍNEZ-PRIETO Luis M, MARBAIX Julien, ASENSIO Juan M, et al. Ultrastable magnetic nanoparticles encapsulated in carbon for magnetically induced catalysis[J]. ACS Applied Nano Materials, 2020, 3(7): 7076-7087.
|
8 |
MORTENSEN Peter Mølgaard, ENGBÆK Jakob Soland, VENDELBO Søren Bastholm, et al. Direct hysteresis heating of catalytically active Ni-Co nanoparticles as steam reforming catalyst[J]. Industrial & Engineering Chemistry Research, 2017, 56(47): 14006-14013.
|
9 |
DE MASI Déborah, ASENSIO Juan M, FAZZINI Pier-Francesco, et al. Engineering iron-nickel nanoparticles for magnetically induced CO2 methanation in continuous flow[J]. Angewandte Chemie International Edition, 2020, 59(15): 6187-6191.
|
10 |
SIUDYGA Tomasz, KAPKOWSKI Maciej, LACH Daniel, et al. Induction heating catalysis: Carbon dioxide methanation on deactivation-resistant trimetallic PdRe/Ni nanoconjugates with Ni-supports[J]. Chemical Engineering Research and Design, 2023, 199: 102-114.
|
11 |
PÉREZ S, DEL MOLINO E, BARRIO V L. Modeling and testing of a milli-structured reactor for carbon dioxide methanation[J]. International Journal of Chemical Reactor Engineering, 2019, 17(11):doi.org/10.1515/ijcre-2018-0238.
|
12 |
BUDIMAN Anatta Wahyu, SONG Sang-Hoon, CHANG Tae-Sun, et al. Dry reforming of methane over cobalt catalysts: A literature review of catalyst development[J]. Catalysis Surveys from Asia, 2012, 16(4): 183-197.
|
13 |
GINSBURG Jason M, Juliana PIÑA, SOLH Tarek EL, et al. Coke formation over a nickel catalyst under methane dry reforming conditions: Thermodynamic and kinetic models[J]. Industrial & Engineering Chemistry Research, 2005, 44(14): 4846-4854.
|
14 |
PHAM Cham Q, BAHARI Mahadi B, KUMAR Ponnusamy Senthil, et al. Carbon dioxide methanation on heterogeneous catalysts: A review[J]. Environmental Chemistry Letters, 2022, 20(6): 3613-3630.
|
15 |
WANG Wei, Cuong DUONG-VIET, XU Zhenxin, et al. CO2 methanation under dynamic operational mode using nickel nanoparticles decorated carbon felt (Ni/OCF) combined with inductive heating[J]. Catalysis Today, 2020, 357: 214-220.
|
16 |
姜鸿杰, 卢闻州. 通道式感应加热系统效率影响因素研究[J]. 电子制作, 2022, 30(15): 97-100.
|
|
JIANG Hongjie, LU Wenzhou. Study on factors affecting the efficiency of channel induction heating system[J]. Practical Electronics, 2022, 30(15): 97-100.
|
17 |
FIRETEANU Virgiliu, TUDORACHE Tiberiu. Numerical simulations of continuous induction heating of magnetic billets and sheets[J]. COMPEL—the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2003, 22(1): 68-78.
|
18 |
MIGUEL C V, MENDES A, MADEIRA L M. Intrinsic kinetics of CO2 methanation over an industrial nickel-based catalyst[J]. Journal of CO2 Utilization, 2018, 25: 128-136.
|
19 |
AYODELE Bamidele V, KHAN Maksudur R, LAM Su Shiung, et al. Production of CO-rich hydrogen from methane dry reforming over lanthania-supported cobalt catalyst: Kinetic and mechanistic studies[J]. International Journal of Hydrogen Energy, 2016, 41(8): 4603-4615.
|
20 |
KOSCHANY Franz, SCHLERETH David, HINRICHSEN Olaf. On the kinetics of the methanation of carbon dioxide on coprecipitated NiAl(O) x [J]. Applied Catalysis B: Environmental, 2016, 181: 504-516.
|
21 |
BETTERIDGE W. The properties of metallic cobalt[J]. Progress in Materials Science, 1980, 24: 51-142.
|
22 |
KOSAKA Fumihiko, YAMAGUCHI Toshiaki, ANDO Yuji, et al. Thermal management of CO2 methanation with axial staging of active metal concentration in Ni-YSZ tubular catalysts[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4116-4125.
|
23 |
GU Yunfei, XU Jiazhong, FU Tianyu. Design and optimization of coil structure based on the uniformity of core temperature field[J]. Journal of Mechanical Science and Technology, 2022, 36(6): 2903-2912.
|
24 |
ALMIND Mads Radmer, VENDELBO Søren Bastholm, HANSEN Mikkel Fougt, et al. Improving performance of induction-heated steam methane reforming[J]. Catalysis Today, 2020, 342: 13-20.
|