化工进展 ›› 2025, Vol. 44 ›› Issue (5): 2563-2576.DOI: 10.16085/j.issn.1000-6613.2025-0014
• 可再生能源利用 • 上一篇
收稿日期:2025-01-03
修回日期:2025-02-12
出版日期:2025-05-25
发布日期:2025-05-20
通讯作者:
孙丽丽
作者简介:魏志强(1984—),男,博士,正高级工程师,研究方向为炼化工程技术开发与设计。E-mail:weizhiqiang.sei@sinopec.com。
Received:2025-01-03
Revised:2025-02-12
Online:2025-05-25
Published:2025-05-20
Contact:
SUN Lili
摘要:
在全球化石能源危机和“双碳”战略背景下,工业富碳气体发酵制备燃料乙醇技术受到了广泛关注。该技术以工业一碳气体如CO、CO2等为原料,利用食气微生物的固碳和代谢作用转化为燃料乙醇,可显著降低对传统化石资源的依赖,同时减少温室气体排放,为工业绿色低碳转型提供了新的解决方案。本文介绍了食气微生物的代谢转化机制,菌种改造手段,以及工业富碳气体发酵制备燃料乙醇技术中工艺流程、反应装置和控制技术的研究进展,总结了近年来富碳气体发酵制备燃料乙醇技术的工业化应用案例,指出了规模化商业化推广应用中面临的主要挑战和可能的解决方案,分析了工业富碳气体发酵制备燃料乙醇的经济性和可持续性,并结合目前法规和政策探讨展望了工业富碳气体制备燃料乙醇技术的市场前景。
中图分类号:
魏志强, 孙丽丽. 工业富碳气体发酵制备燃料乙醇技术现状与挑战[J]. 化工进展, 2025, 44(5): 2563-2576.
WEI Zhiqiang, SUN Lili. Current status and challenges of ethanol production technology from industrial carbon-rich gas fermentation[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2563-2576.
| 微生物 | 气体底物 | 产物 | 适宜温度/℃ | 适宜pH | 参考文献 |
|---|---|---|---|---|---|
| Acetobacterium woodii | CO2/H2、CO/CO2/H2 | 乙酸 | 30 | 7.0 | [ |
| Butyribacteriaum methylotrophic | CO、CO2/H2 | 乙酸、乙醇、丁酸、丁醇 | 37 | 7.5 | [ |
| Clostridium autoethanogenum | CO、CO2/H2 | 乙酸、乙醇、2,3-丁二醇 | 37 | 6.0 | [ |
| Clostridium carboxidivorans | CO、CO2/H2 | 乙酸、乙醇、丁酸、丁醇、己酸、己醇 | 38 | 5.0~7.0 | [ |
| Clostridium ljungdahlii | CO、CO2/H2 | 乙酸、乙醇、2,3-丁二醇 | 37 | 6.0 | [ |
| Clostridium ragsdalei | CO、CO2/H2 | 乙酸、乙醇、2,3-丁二醇 | 37 | 6.3 | [ |
| Moorella thermoacetica | CO、CO2/H2 | 乙酸 | 55~60 | 6.5~6.8 | [ |
表1 代表性产乙酸菌的特征
| 微生物 | 气体底物 | 产物 | 适宜温度/℃ | 适宜pH | 参考文献 |
|---|---|---|---|---|---|
| Acetobacterium woodii | CO2/H2、CO/CO2/H2 | 乙酸 | 30 | 7.0 | [ |
| Butyribacteriaum methylotrophic | CO、CO2/H2 | 乙酸、乙醇、丁酸、丁醇 | 37 | 7.5 | [ |
| Clostridium autoethanogenum | CO、CO2/H2 | 乙酸、乙醇、2,3-丁二醇 | 37 | 6.0 | [ |
| Clostridium carboxidivorans | CO、CO2/H2 | 乙酸、乙醇、丁酸、丁醇、己酸、己醇 | 38 | 5.0~7.0 | [ |
| Clostridium ljungdahlii | CO、CO2/H2 | 乙酸、乙醇、2,3-丁二醇 | 37 | 6.0 | [ |
| Clostridium ragsdalei | CO、CO2/H2 | 乙酸、乙醇、2,3-丁二醇 | 37 | 6.3 | [ |
| Moorella thermoacetica | CO、CO2/H2 | 乙酸 | 55~60 | 6.5~6.8 | [ |
| 反应器类型 | 气源组成(质量比) | 反应条件 | 菌种 | 乙醇浓度 | 乙醇合成速率 | 参考文献 |
|---|---|---|---|---|---|---|
| MBR① | CO∶H2∶CO2∶N2= 20∶5∶15∶60 | 37℃ | C.carboxidivorans P7 | 4.89g/L | 2.35g/(L·d) | [ |
| BCR② | CO∶H2∶CO2∶N2= 20∶5∶15∶60 | 37℃ | C. carboxidivorans P7 | 3.20g/L | 1.54g/(L·d) | [ |
| STR③ | CO∶H2∶CO2∶N2= 20∶5∶15∶60 | 37℃ 150r/min | C. ragsdalei P11 | 25.26g/L (59天) | — | [ |
| CSTR-BCR | CO∶H2∶CO2= 60∶35∶5 | 200r/min (BCR) | C. ljungdahlii ERI-2 | 450mmol/L (2.1%) | 0.37g/(L·h) | [ |
| CSTR④ | CO∶H2∶CO2∶Ar= 55∶20∶10∶15 | 33℃, 300~500r/min | C. ljungdahlii | 48g/L(560h) | — | [ |
| CSTR | CO∶H2∶CO2∶Ar= 55∶20∶10∶15 | 37℃ 500r/min | C. ljungdahlii | 6.5g/L (3周) | — | [ |
| HFMBR⑤ | CO∶H2∶CO2∶Ar= 20∶5∶15∶60 | 37℃ | C. carboxidivorans P7 | 23.93g/L | 3.34g/(L·d) | [ |
| TBR⑥ | CO∶H2∶CO2∶N2= 38∶28.5∶28.5∶5 | 37℃ | Clostridium ragsdalei | 5.7g/L (1662h) | 0.80mmol/(L·h) | [ |
| CSTR | CO∶H2∶CO2∶N2= 15∶5∶15∶60 | 37℃ 150r/min | Clostridium strain P11 | 9.6g/L (360h) | 0.58mmol/(L·h) | [ |
| TBR | CO∶H2∶CO2∶N2= 38∶28.5∶28.5∶5 | 37℃ | Clostridium ragsdalei | 4.3g/L (909h) | 3.43mmol/(L·h) | [ |
表2 不同反应器类型及发酵条件下产物结果
| 反应器类型 | 气源组成(质量比) | 反应条件 | 菌种 | 乙醇浓度 | 乙醇合成速率 | 参考文献 |
|---|---|---|---|---|---|---|
| MBR① | CO∶H2∶CO2∶N2= 20∶5∶15∶60 | 37℃ | C.carboxidivorans P7 | 4.89g/L | 2.35g/(L·d) | [ |
| BCR② | CO∶H2∶CO2∶N2= 20∶5∶15∶60 | 37℃ | C. carboxidivorans P7 | 3.20g/L | 1.54g/(L·d) | [ |
| STR③ | CO∶H2∶CO2∶N2= 20∶5∶15∶60 | 37℃ 150r/min | C. ragsdalei P11 | 25.26g/L (59天) | — | [ |
| CSTR-BCR | CO∶H2∶CO2= 60∶35∶5 | 200r/min (BCR) | C. ljungdahlii ERI-2 | 450mmol/L (2.1%) | 0.37g/(L·h) | [ |
| CSTR④ | CO∶H2∶CO2∶Ar= 55∶20∶10∶15 | 33℃, 300~500r/min | C. ljungdahlii | 48g/L(560h) | — | [ |
| CSTR | CO∶H2∶CO2∶Ar= 55∶20∶10∶15 | 37℃ 500r/min | C. ljungdahlii | 6.5g/L (3周) | — | [ |
| HFMBR⑤ | CO∶H2∶CO2∶Ar= 20∶5∶15∶60 | 37℃ | C. carboxidivorans P7 | 23.93g/L | 3.34g/(L·d) | [ |
| TBR⑥ | CO∶H2∶CO2∶N2= 38∶28.5∶28.5∶5 | 37℃ | Clostridium ragsdalei | 5.7g/L (1662h) | 0.80mmol/(L·h) | [ |
| CSTR | CO∶H2∶CO2∶N2= 15∶5∶15∶60 | 37℃ 150r/min | Clostridium strain P11 | 9.6g/L (360h) | 0.58mmol/(L·h) | [ |
| TBR | CO∶H2∶CO2∶N2= 38∶28.5∶28.5∶5 | 37℃ | Clostridium ragsdalei | 4.3g/L (909h) | 3.43mmol/(L·h) | [ |
| 类型 | CO/% | CO2/% | H2/% | N2/% | 参考文献 |
|---|---|---|---|---|---|
| 高炉煤气 | 20~35 | 20~30 | 2~4 | 50~60 | [ |
| 转炉煤气 | 50~70 | 10~20 | 1~2 | 15~30 | [ |
| 铁合金尾气 | 65~75 | 0~5 | 5~10 | 5~10 | [ |
| 电石尾气 | 74~85 | 2~10 | 5~10 | 1~8 | [ |
| 黄磷尾气 | 87~92 | 1~4 | 1~8 | 2~5 | [ |
| 生物质气化合成气 | 31~34 | 3~10 | 37~43 | 10~20 | [ |
表3 不同行业工业富碳气体组成成分(体积分数)
| 类型 | CO/% | CO2/% | H2/% | N2/% | 参考文献 |
|---|---|---|---|---|---|
| 高炉煤气 | 20~35 | 20~30 | 2~4 | 50~60 | [ |
| 转炉煤气 | 50~70 | 10~20 | 1~2 | 15~30 | [ |
| 铁合金尾气 | 65~75 | 0~5 | 5~10 | 5~10 | [ |
| 电石尾气 | 74~85 | 2~10 | 5~10 | 1~8 | [ |
| 黄磷尾气 | 87~92 | 1~4 | 1~8 | 2~5 | [ |
| 生物质气化合成气 | 31~34 | 3~10 | 37~43 | 10~20 | [ |
| 1 | 王悦琳, 晁伟, 蓝晓程, 等. 合成气生物发酵法制乙醇的研究进展[J]. 化工学报, 2022, 73(8): 3448-3460. |
| WANG Yuelin, CHAO Wei, LAN Xiaocheng, et al. Review of ethanol production via biological syngas fermentation[J]. CIESC Journal, 2022, 73(8): 3448-3460. | |
| 2 | 姚远, 井红权, 尹玉婷, 等. “双碳” 背景下热法黄磷生产技术研究现状及建议[J]. 化工进展, 2024, 43(4): 2104-2116. |
| YAO Yuan, JING Hongquan, YIN Yuting, et al. Research status and suggestions of yellow hosphorus production technology by thermal processing under peak carbon dioxide emission and carbon neutrality[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2104-2116. | |
| 3 | WU Bo, WANG Yanwei, DAI Yonghua, et al. Current status and future prospective of bio-ethanol industry in China[J]. Renewable and Sustainable Energy Reviews, 2021, 145: 111079. |
| 4 | SHIN Jongoh, SONG Yoseb, KANG Seulgi, et al. Genome-scale analysis of Acetobacterium woodii identifies translational regulation of acetogenesis[J]. mSystems, 2021, 6(4): e0069621. |
| 5 | HESS Verena, OYRIK Olga, Dragan TRIFUNOVIĆ, et al. 2,3-butanediol metabolism in the acetogen Acetobacterium woodii [J]. Applied and Environmental Microbiology, 2015, 81(14): 4711-4719. |
| 6 | KIM Young-Kee, PARK So Eun, LEE Haryeong, et al. Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles[J]. Bioresource Technology, 2014, 159: 446-450. |
| 7 | JENSEN Rasmus O, SCHULZ Frederik, ROUX Simon, et al. Phylogenomics and genetic analysis of solvent-producing Clostridium species[J]. Scientific Data, 2024, 11(1): 432. |
| 8 | GROHER Anna, Dirk WEUSTER-BOTZ. Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation[J]. Journal of Biotechnology, 2016, 228: 82-94. |
| 9 | REDL Stephanie, POEHLEIN Anja, ESSER Carola, et al. Genome-based comparison of all species of the genus Moorella, and status of the species Moorella thermoacetica and Moorella thermoautotrophica [J]. Frontiers in Microbiology, 2020, 10: 3070. |
| 10 | BERTSCH Johannes, Volker MÜLLER. CO metabolism in the acetogen Acetobacterium woodii [J]. Applied and Environmental Microbiology, 2015, 81(17): 5949-5956. |
| 11 | PACHECO Marta, PINTO Filomena, ORTIGUEIRA Joana, et al. Lignin syngas bioconversion by Butyribacterium methylotrophicum: Advancing towards an integrated biorefinery[J]. Energies, 2021, 14(21): 7124. |
| 12 | ABRINI Jamal, NAVEAU Henry, NYNS Edmond-Jacques. Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide[J]. Archives of Microbiology, 1994, 161(4): 345-351. |
| 13 | COTTER Jacqueline L, CHINN Mari S, GRUNDEN Amy M. Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas[J]. Enzyme and Microbial Technology, 2009, 44(5): 281-288. |
| 14 | TANNER R S, MILLER L M, YANG D. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I[J]. International Journal of Systematic Bacteriology, 1993, 43(2): 232-236. |
| 15 | PANNEERSELVAM A, WILKINS M R, DELORME M J M, et al. Effects of various reducing agents on syngas fermentation by “Clostridium ragsdalei”[J]. Biological Engineering, 2010, 2(3): 135-144. |
| 16 | JIA Dechen, DENG Wangshuying, HU Peng, et al. Thermophilic Moorella thermoacetica as a platform microorganism for C1 gas utilization: Physiology, engineering, and applications[J]. Bioresources and Bioprocessing, 2023, 10(1): 61. |
| 17 | BARIK S, PRIETO S, HARRISON S B, et al. Biological production of alcohols from coal through indirect liquefaction[J]. Applied Biochemistry and Biotechnology, 1988, 18(1): 363-378. |
| 18 | Michael KÖPKE, HELD Claudia, HUJER Sandra, et al. Clostridium ljungdahlii represents a microbial production platform based on syngas[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(29): 13087-13092. |
| 19 | ZHU Haifeng, LIU Ziyong, ZHOU Xia, et al. Energy conservation and carbon flux distribution during fermentation of CO or H2/CO2 by Clostridium ljungdahlii [J]. Frontiers in Microbiology, 2020, 11: 416. |
| 20 | SCHULZ Sarah, MOLITOR Bastian, ANGENENT Largus T. Acetate augmentation boosts the ethanol production rate and specificity by Clostridium ljungdahlii during gas fermentation with pure carbon monoxide[J]. Bioresource Technology, 2023, 369: 128387. |
| 21 | PHILLIPS J R, KLASSON K T, CLAUSEN E C, et al. Biological production of ethanol from coal synthesis gas[J]. Applied Biochemistry and Biotechnology, 1993, 39(1): 559-571. |
| 22 | MARTIN Michael E, RICHTER Hanno, SAHA Surya, et al. Traits of selected Clostridium strains for syngas fermentation to ethanol[J]. Biotechnology and Bioengineering, 2016, 113(3): 531-539. |
| 23 | CHEN Jin, DANIELL James, GRIFFIN Derek, et al. Experimental testing of a spatiotemporal metabolic model for carbon monoxide fermentation with Clostridium autoethanogenum [J]. Biochemical Engineering Journal, 2018, 129: 64-73. |
| 24 | LIOU Jack S-C, BALKWILL David L, DRAKE Gwendolyn R, et al. Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. [J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(5): 2085-2091. |
| 25 | Hyun Ju OH, GONG Gyeongtaek, Jung Ho AHN, et al. Effective hexanol production from carbon monoxide using extractive fermentation with Clostridium carboxidivorans P7[J]. Bioresource Technology, 2023, 367: 128201. |
| 26 | STRAUB Melanie, DEMLER Martin, Dirk WEUSTER-BOTZ, et al. Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii [J]. Journal of Biotechnology, 2014, 178: 67-72. |
| 27 | GONG Guiping, WU Bo, LIU Linpei, et al. Metabolic engineering using acetate as a promising building block for the production of bio-based chemicals[J]. Engineering Microbiology, 2022, 2(4): 100036. |
| 28 | SCHUCHMANN Kai, Volker MÜLLER. Autotrophy at the thermodynamic limit of life: A model for energy conservation in acetogenic bacteria[J]. Nature Reviews Microbiology, 2014, 12(12): 809-821. |
| 29 | TREMBLAY Pier-Luc, ZHANG Tian, Shabir A DAR, et al. The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin: NAD+ oxidoreductase essential for autotrophic growth[J]. mBio, 2012, 4(1): e00406-12. |
| 30 | LIEW Fungmin, HENSTRA Anne M, Michael KÖPKE, et al. Metabolic engineering of Clostridium autoethanogenum for selective alcohol production[J]. Metabolic Engineering, 2017, 40: 104-114. |
| 31 | HUANG He, CHAI Changsheng, LI Ning, et al. CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium[J]. ACS Synthetic Biology, 2016, 5(12): 1355-1361. |
| 32 | NAGARAJU Shilpa, DAVIES Naomi Kathleen, WALKER David Jeffrey Fraser, et al. Genome editing of Clostridium autoethanogenum using CRISPR/Cas9[J]. Biotechnology for Biofuels, 2016, 9: 219. |
| 33 | ZHAO Ran, LIU Yanqiang, ZHANG Huan, et al. CRISPR-Cas12a-mediated gene deletion and regulation in Clostridium ljungdahlii and its application in carbon flux redirection in synthesis gas fermentation[J]. ACS Synthetic Biology, 2019, 8(10): 2270-2279. |
| 34 | ZHANG Huan, FENG Huibao, XING Xinhui, et al. Pooled CRISPR interference screening identifies crucial transcription factors in gas-fermenting Clostridium ljungdahlii [J]. ACS Synthetic Biology, 2024, 13(6): 1893-1905. |
| 35 | WOOLSTON Benjamin M, EMERSON David F, CURRIE Devin H, et al. Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi)[J]. Metabolic Engineering, 2018, 48: 243-253. |
| 36 | BANERJEE Areen, LEANG Ching, UEKI Toshiyuki, et al. Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii [J]. Applied and Environmental Microbiology, 2014, 80(8): 2410-2416. |
| 37 | HANKYONG Industry Academic Cooperation Center. Clostridium ljungdahlii with acetate kinase gene knocked out and method for producing ethanol using the same: KR101270596B1[P]. 2011-10-27 |
| 38 | KOEPKE Michael, LIEW Fungmin, SIMPSON Sean Dennis. Recombinant microorganisms with increased tolerance to ethanol: US20150376654[P]. 2015-12-31 |
| 39 | CHENG Chi, LI Weiming, LIN Meng, et al. Metabolic engineering of Clostridium carboxidivorans for enhanced ethanol and butanol production from syngas and glucose[J]. Bioresource Technology, 2019, 284: 415-423. |
| 40 | LIU Yanqiang, ZHANG Ziwen, JIANG Weihong, et al. Protein acetylation-mediated cross regulation of acetic acid and ethanol synthesis in the gas-fermenting Clostridium ljungdahlii [J]. Journal of Biological Chemistry, 2022, 298(2): 101538. |
| 41 | LAKHSSASSI Naoufal, BAHARLOUEI Azam, MEKSEM Jonas, et al. EMS-induced mutagenesis of Clostridium carboxidivorans for increased atmospheric CO2 reduction efficiency and solvent production[J]. Microorganisms, 2020, 8(8): 1239. |
| 42 | SHEN Yanwen, BROWN Robert, WEN Zhiyou. Enhancing mass transfer and ethanol production in syngas fermentation of Clostridium carboxidivorans P7 through a monolithic biofilm reactor[J]. Applied Energy, 2014, 136: 68-76. |
| 43 | KUNDIYANA Dimple K, HUHNKE Raymond L, WILKINS Mark R. Syngas fermentation in a 100-L pilot scale fermentor: Design and process considerations[J]. Journal of Bioscience and Bioengineering, 2010, 109(5): 492-498. |
| 44 | RICHTER Hanno, MARTIN Michael, ANGENENT Largus. A two-stage continuous fermentation system for conversion of syngas into ethanol[J]. Energies, 2013, 6(8): 3987-4000. |
| 45 | MOHAMMADI Maedeh, YOUNESI Habibollah, NAJAFPOUR Ghasem, et al. Sustainable ethanol fermentation from synthesis gas by Clostridium ljungdahlii in a continuous stirred tank bioreactor[J]. Journal of Chemical Technology & Biotechnology, 2012, 87(6): 837-843. |
| 46 | SHEN Yanwen, BROWN Robert, WEN Zhiyou. Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: Evaluating the mass transfer coefficient and ethanol production performance[J]. Biochemical Engineering Journal, 2014, 85: 21-29. |
| 47 | DEVARAPALLI Mamatha, ATIYEH Hasan K, PHILLIPS John R, et al. Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei [J]. Bioresource Technology, 2016, 209: 56-65. |
| 48 | MADDIPATI Prasanth, ATIYEH Hasan K, BELLMER Danielle D, et al. Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract[J]. Bioresource Technology, 2011, 102(11): 6494-6501. |
| 49 | DEVARAPALLI Mamatha, LEWIS Randy, ATIYEH Hasan. Continuous ethanol production from synthesis gas by Clostridium ragsdalei in a trickle-bed reactor[J]. Fermentation, 2017, 3(2): 23. |
| 50 | ORGILL James J, ATIYEH Hasan K, DEVARAPALLI Mamatha, et al. A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors[J]. Bioresource Technology, 2013, 133: 340-346. |
| 51 | RIGGS Seth S, HEINDEL Theodore J. Measuring carbon monoxide gas-liquid mass transfer in a stirred tank reactor for syngas fermentation[J]. Biotechnology Progress, 2006, 22(3): 903-906. |
| 52 | Katharina STOLL I, BOUKIS Nikolaos, Jörg SAUER. Syngas fermentation to alcohols: Reactor technology and application perspective[J]. Chemie Ingenieur Technik, 2020, 92(1/2): 125-136. |
| 53 | Michael KÖPKE, MIHALCEA Christophe, BROMLEY Jason C, et al. Fermentative production of ethanol from carbon monoxide[J]. Current Opinion in Biotechnology, 2011, 22(3): 320-325. |
| 54 | BREDWELL Marshall D, Mark WORDEN R. Mass-transfer properties of microbubbles. 1. Experimental studies[J]. Biotechnology Progress, 1998, 14(1): 31-38. |
| 55 | SHIMIZU K, TAKADA S, MINEKAWA K, et al. Phenomenological model for bubble column reactors: Prediction of gas hold-ups and volumetric mass transfer coefficients[J]. Chemical Engineering Journal, 2000, 78(1): 21-28. |
| 56 | NAGARAJAN Harish, SAHIN Merve, NOGALES Juan, et al. Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii [J]. Microbial Cell Factories, 2013, 12: 118. |
| 57 | MARCELLIN Esteban, BEHRENDORFF James B, NAGARAJU Shilpa, et al. Low carbon fuels and commodity chemicals from waste gases-systematic approach to understand energy metabolism in a model acetogen[J]. Green Chemistry, 2016, 18(10): 3020-3028. |
| 58 | CHEN Jin, GOMEZ Jose A, Kai HÖFFNER, et al. Metabolic modeling of synthesis gas fermentation in bubble column reactors[J]. Biotechnology for Biofuels, 2015, 8: 89. |
| 59 | KANTARCI Nigar, BORAK Fahir, ULGEN Kutlu O. Bubble column reactors[J]. Process Biochemistry, 2005, 40(7): 2263-2283. |
| 60 | SHU Shuli, VIDAL David, BERTRAND François, et al. Multiscale multiphase phenomena in bubble column reactors: A review[J]. Renewable Energy, 2019, 141: 613-631. |
| 61 | LI Xueliang, COSSEY Benjamin James, TREVETHICK Simon Richard. Fermentation of gaseous substrates: US20150031099 [P]. 2015-01-29. |
| 62 | PUIMAN Lars, ABRAHAMSON Britt,VAN DER LANS Rob G J M,et al. Alleviating mass transfer limitations in industrial external-loop syngas-to-ethanol fermentation[J]. Chemical Engineering Science, 2022, 259: 117770. |
| 63 | MUTHARASU L C, KALAGA Dinesh V, SATHE Mayur, et al. Experimental study and CFD simulation of the multiphase flow conditions encountered in a Novel Down-flow bubble column[J]. Chemical Engineering Journal, 2018, 350: 507-522. |
| 64 | LI Xiangan, CHEN Jin, GRIFFIN Derek, et al. Integrated metabolic and process modeling of bubble column reactors for gas fermentation[M]. Computer Aided Chemical Engineering. Netherlands: Elsevier, 2018: 2491-2496. |
| 65 | ZHANG Tongwang, WANG Jinfu, WANG Tiefeng, et al. Effect of internal on the hydrodynamics in external-loop airlift reactors[J]. Chemical Engineering and Processing: Process Intensification, 2005, 44(1): 81-87. |
| 66 | DATAR Rohit P, SHENKMAN Rustin M, CATENI Bruno G, et al. Fermentation of biomass-generated producer gas to ethanol[J]. Biotechnology and Bioengineering, 2004, 86(5): 587-594. |
| 67 | RAMACHANDRIYA Karthikeyan D, KUNDIYANA Dimple K, SHARMA Ashokkumar M, et al. Critical factors affecting the integration of biomass gasification and syngas fermentation technology[J]. AIMS Bioengineering, 2016, 3(2): 188-210. |
| 68 | AHMED Asma, CATENI Bruno G, HUHNKE Raymond L, et al. Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7T[J]. Biomass and Bioenergy, 2006, 30(7): 665-672. |
| 69 | XU Deshun, TREE Douglas R, LEWIS Randy S. The effects of syngas impurities on syngas fermentation to liquid fuels[J]. Biomass and Bioenergy, 2011, 35(7): 2690-2696. |
| 70 | AHMED Asma, LEWIS Randy S. Fermentation of biomass-generated synthesis gas: Effects of nitric oxide[J]. Biotechnology and Bioengineering, 2007, 97(5): 1080-1086. |
| 71 | Anton RÜCKEL, HANNEMANN Jens, MAIERHOFER Carolin, et al. Studies on syngas fermentation with Clostridium carboxidivorans in stirred-tank reactors with defined gas impurities[J]. Frontiers in Microbiology, 2021, 12: 655390. |
| 72 | 陆佳滢, 王玉明, 李咸伟, 等. 钢铁废气中二氧化碳的微生物固定与转化机制研究进展[J]. 中国环境科学, 2024, 44(9): 5248-5262. |
| LU Jiaying, WANG Yuming, LI Xianwei, et al. Advances in microbial fixation and conversion mechanisms of carbon dioxide derived from steel off-gas[J]. China Environmental Science, 2024, 44(9): 5248-5262. | |
| 73 | 莫志朋, 晁伟, 佟淑环, 等. 工业尾气生物发酵制乙醇技术及其应用进展[J]. 化学与生物工程, 2024, 41(1): 8-12. |
| MO Zhipeng, CHAO Wei, TONG Shuhuan, et al. Ethanol production technology through biofermentation of industrial exhaust gas and its application progress[J]. Chemistry & Bioengineering, 2024, 41(1): 8-12. | |
| 74 | 门春艳. 电石炉尾气处理及综合利用探究[J]. 山西化工, 2022, 42(6): 146-147, 159. |
| Chunyan MEN. Research on treatment and comprehensive utilization of calcium carbide furnace tail gas[J]. Shanxi Chemical Industry, 2022, 42(6): 146-147, 159. | |
| 75 | 肖二飞, 雷军, 刘应杰, 等. 黄磷尾气的净化与综合利用[J]. 广东化工, 2016, 43(17): 254-255. |
| XIAO Erfei, LEI Jun, LIU Yingjie, et al. Purification and utilization of yellow phosphorus yail gas[J]. Guangdong Chemical Industry, 2016, 43(17): 254-255. | |
| 76 | Carla FERNÁNDEZ-BLANCO, Raúl ROBLES-IGLESIAS, Cecilia NAVEIRA-PAZOS, et al. Production of biofuels from C1-gases with Clostridium and related bacteria—Recent advances[J]. Microbial Biotechnology, 2023, 16(4): 726-741. |
| 77 | ABUBACKAR Haris Nalakath, VEIGA María C, KENNES Christian. Production of acids and alcohols from syngas in a two-stage continuous fermentation process[J]. Bioresource Technology, 2018, 253: 227-234. |
| 78 | Jiyun BAE, SONG Yoseb, LEE Hyeonsik, et al. Valorization of C1 gases to value-added chemicals using acetogenic biocatalysts[J]. Chemical Engineering Journal, 2022, 428: 131325. |
| 79 | 贾剑辉, 李鹏辉, 杨松泉, 等. 燃料乙醇三塔差压蒸馏工艺模拟研究[J]. 化学工程, 2018, 46(9): 73-78. |
| JIA Jianhui, LI Penghui, YANG Songquan, et al. Simulation of three column differential pressure distillation process for fuel ethanol[J]. Chemical Engineering (China), 2018, 46(9): 73-78. | |
| 80 | LI Qunsheng, HU Nan, ZHANG Shuping, et al. Energy-saving heat integrated extraction-azeotropic distillation for separating isobutanol-ethanol-water[J]. Separation and Purification Technology, 2021, 255: 117695. |
| 81 | ZHU Zhaoyou, RI Yongsaeng, LI Min, et al. Extractive distillation for ethanol dehydration using imidazolium-based ionic liquids as solvents[J]. Chemical Engineering and Processing-Process Intensification, 2016, 109: 190-198. |
| 82 | KUJAWSKA Anna, KUJAWSKI Wojciech, Wiesław CAPAŁA, et al. Influence of process parameters on the efficiency of pervaporation pilot ECO-001 plant for raw ethanol dehydration[J]. Membranes, 2024, 14(4): 90. |
| 83 | SINGH Ramkrishna, PALAR Skye, KOWALCZEWSKI Amy, et al. Adsorptive recovery of volatile fatty acids from wastewater fermentation broth[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110507. |
| 84 | LIU Guoqing, ZHOU Meng, MAO Xiangjie, et al. Evaluation of the appropriate Clostridium autoethanogenum protein level in grass carp (Ctenopharyngodon idellus) diets by growth performance, health status, and intestinal microbiota[J]. Aquaculture International, 2024, 32(1): 31-59. |
| 85 | 张宇恒, 袁惠新, 付双成, 等. 油品脱水用碟式离心机的流场及分离性能[J]. 石油学报(石油加工), 2019, 35(2): 275-282. |
| ZHANG Yuheng, YUAN Huixin, FU Shuangcheng, et al. Flow field and separation performance of disc centrifuge for oil dewatering[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(2): 275-282. | |
| 86 | MOLITOR Bastian, RICHTER Hanno, MARTIN Michael E, et al. Carbon recovery by fermentation of CO-rich off gases-turning steel mills into biorefineries[J]. Bioresource Technology, 2016, 215: 386-396. |
| 87 | TEIXEIRA Leonardo V, MOUTINHO Liza F, ROMÃO-DUMARESQ Aline S. Gas fermentation of C1 feedstocks: Commercialization status and future prospects[J]. Biofuels, Bioproducts and Biorefining, 2018, 12(6): 1103-1117. |
| 88 | Michael KÖPKE, SIMPSON Séan D. Pollution to products: Recycling of ‘above ground’ carbon by gas fermentation[J]. Current Opinion in Biotechnology, 2020, 65: 180-189. |
| 89 | FACKLER Nick, HEIJSTRA Björn D, RASOR Blake J, et al. Stepping on the gas to a circular economy: Accelerating development of carbon-negative chemical production from gas fermentation[J]. Annual Review of Chemical and Biomolecular Engineering, 2021, 12: 439-470. |
| 90 | 巨鹏生物. 巨鹏生物与潞安集团、中科院上海高研院签署三方协议[EB/OL]. (2018-04-11) [2024-11-01]. . |
| Biology Jupeng. Jupeng Biology signed a tripartite agreement with Lu’an Group and Shanghai Institute of Advanced Research, Chinese Academy of Sciences [EB/OL]. (2018-04-11) [2024-11-01]. . | |
| 91 | 永城市人民政府. 赛龙图生物科技年产5万吨无水乙醇项目开工[EB/OL]. (2023-11-15) [2024-11-01]. . |
| Yongcheng Municipal People’s Goverment. The annual production of 5000 tons of anhydrous ethanol project by Sailongtu Biotechnology has started [EB/OL]. (2023-11-15) [2024-11-01]. . | |
| 92 | 36氪. 食气生化获数千万元Pre-A轮融资,十吨级气体发酵装置已机械竣工[EB/OL]. (2024-08-31) [2024-11-01]. . |
| 93 | Kr. Shiqi Biochemical has obtained tens of millions of yuan in Pre-A financiny, and the ten ton gas fermentation unit has been mechanically completed [EB/OL]. (2024-08-31) [2024-11-01]. . |
| 94 | HU Peng, CHAKRABORTY Sagar, KUMAR Amit, et al. Integrated bioprocess for conversion of gaseous substrates to liquids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(14): 3773-3778. |
| 95 | 王悦. 巨鹏生物:合成生物学气体发酵技术的先行者,开拓绿色生物能源新未来[EB/OL]. (2024-09-13) [2024-11-01]. . |
| WANG Yue. Jupeng Biology: A pioneer in synthetic biology gas fermentation technology, pioneering a new future of green bioenergy [EB/OL]. (2024-09-13) [2024-11-01]. . | |
| 96 | 京津冀消息通. 首钢集团国际重大突破!首钢朗泽一碳生物合成实现规模化生产形成万吨级工业产能[EB/OL]. (2021-11-02) [2024-11-01]. . |
| Beijing-Tianjin-Hebei News Communication. Shougang Group international major breakthrough! Shougang Langze’s carbon biosynthesis has achieved large-scale production, forming an industrial capacity of 1000 tons [EB/OL]. (2021-11-02) [2024-11-01]. . | |
| 97 | McCoy Michael. Green chemical maker LanzaTech to go public via merger[EB/OL]. (2022-03-09) [2024-11-01]. . |
| 98 | 新华每日电讯. “煤城”不产煤之后一个西部资源枯竭型城市的转型调查[EB/OL]. (2023-08-03) [2024-11-01]. . |
| Xinhua Daily Telegraph A survey on the transformation of a western resource depleted city after the “Coal City” stopped producing coal [EB/OL]. (2023-08-03) [2024-11-01]. . | |
| 99 | 希宗坡, 回江丽, 曹全, 等. 一种煤气浓度可调的发酵系统: CN218372301U[P]. 2023-01-24. |
| XI Zongpo, HUI Jiangli, CAO Quan, et al. Fermentation system with adjustable gas concentration: CN218372301U[P]. 2023-01-24. | |
| 100 | 叶江红, 陈超超, 王兴凯, 等. 一种稳定原料气中CO浓度波动的发酵系统: CN217868881U[P]. 2022-11-22. |
| YE Jianghong, CHEN Chaochao, WANG Xingkai, et al. Fermentation system for stabilizing CO concentration fluctuation in feed gas: CN217868881U[P]. 2022-11-22. | |
| 101 | 颜廷刚, 常春, 巩刚伦, 等. 一种氧分析仪的气体净化装置: CN115753309A[P]. 2023-03-07 |
| YAN Tinggang, CHANG Chun, GONG Ganglun, et al. Gas purification device of oxygen analyzer: CN115753309A[P]. 2023-03-07. | |
| 102 | COLLET Christophe, WATERS Guy William, BROMLEY Jason Carl, et al. Control of bioreactor processes: US20170175064[P]. 2017-06-22. |
| 103 | 佟淑环, 莫志朋, 张春悦, 等. 一种代谢物连续监测的方法和装置: CN118146929A[P]. 2024-06-07. |
| TONG Shuhuan, MO Zhipeng, ZHANG Chunyue, et al. Metabolin continuous monitoring method and device: CN118146929A[P]. 2024-06-07. | |
| 104 | 岳群华, 佟淑环, 莫志朋, 等. 一种基于PacBio测序筛查工业微生物发酵早期杂菌污染的方法: CN115786558A[P]. 2023-03-14. |
| YUE Qunhua, TONG Shuhuan, MO Zhipeng, et al. Method for screening infectious microbe pollution in early stage of industrial microbial fermentation based on PacBio sequencing: CN115786558A[P]. 2023-03-14. | |
| 105 | 夏楠, 王晓东, 宋庆坤, 等. 一种乙醇蒸馏中试系统: CN213724893U[P]. 2021-07-20. |
| XIA Nan, WANG Xiaodong, SONG Qingkun, et al. Ethanol distillation pilot plant test system: CN213724893U[P]. 2021-07-20. | |
| 106 | SUN Xiao, ATIYEH Hasan K, HUHNKE Raymond L, et al. Syngas fermentation process development for production of biofuels and chemicals: A review[J]. Bioresource Technology Reports, 2019, 7: 100279. |
| 107 | Daniel KLEIN-MARCUSCHAMER, Piotr OLESKOWICZ-POPIEL, SIMMONS Blake A, et al. Technoeconomic analysis of biofuels: A wiki-based platform for lignocellulosic biorefineries[J]. Biomass and Bioenergy, 2010, 34(12): 1914-1921. |
| 108 | DETSIOS Nikolaos, MARAGOUDAKI Leda, REBECCHI Stefano, et al. Techno-economic evaluation of jet fuel production via an alternative gasification-driven biomass-to-liquid pathway and benchmarking with the state-of-the-art Fischer-Tropsch and alcohol-to-jet concepts[J]. Energies, 2024, 17(7): 1685. |
| 109 | 北京首钢朗泽科技股份有限公司. 工业尾气生物发酵制燃料乙醇项目介绍[C]//2019钢铁、焦化行业煤气安全管理与高效利用技术交流会文集. 河北: 河北省金属学会, 2019: 125-131. |
| Beijing Shougang Lanzatech New Energy Technology Co., Ltd. The introduction of fuel ethanol production from industrial exhaust gas by biological fermentation[C]// Steel, Coking Industry Gas Safety Management and Efficient Utilization technology Exchange Conference Proceedings in 2019. Hebei: Hebei Metal Society, 2019: 125-131. | |
| 110 | Xunmin OU, ZHANG Xu, ZHANG Qian, et al. Life-cycle analysis of energy use and greenhouse gas emissions of gas-to-liquid fuel pathway from steel mill off-gas in China by the LanzaTech process[J]. Frontiers in Energy, 2013, 7(3): 263-270. |
| 111 | 应汉杰, 柳东, 王振宇, 等. 工业生物制造与“碳中和”目标探讨[J]. 合成生物学, 2025, 6(1): 1-7. |
| YING Hanjie, LIU Dong, WANG Zhenyu, et al. Exploring industrial biomanufacturing and the goal of “carbon neutrality”[J]. Synthetic Biology Journal, 2025, 6(1): 1-7. | |
| 112 | 中国石化集团技术经济研究院有限公司. 2025中国能源化工产业发展报告[M]. 北京: 中国石化出版社, 2024. |
| Sinopec Economics & Development Research Institute Company Limited. 2025 China Energy and Chemical Industry Development Report[M]. Beijing: China Petrochemical Press Co., Ltd, 2024. |
| [1] | 王良玉, 曹辉, 谭天伟. 基于微生物发酵构建生物基材料及单体模块[J]. 化工进展, 2025, 44(5): 2394-2406. |
| [2] | 陈彦君, 戴杰, 单军强, 张思欣, 计磊, 朱晨杰, 应汉杰. 我国纤维素乙醇的研究进展和发展趋势[J]. 化工进展, 2025, 44(5): 2541-2562. |
| [3] | 刘法志, 张鹏威, 刘涛, 谢玉仙, 何建乐, 苏胜, 徐俊, 向军. Sb改性钒钛SCR脱硝催化剂抗CO中毒性能[J]. 化工进展, 2025, 44(2): 1129-1137. |
| [4] | 郑钧译, 李明, 朱倍弘, 苏畅, 郭思含, 于麒麟, 张耀斌. 餐厨垃圾体系下的丁酸发酵强化[J]. 化工进展, 2024, 43(S1): 597-603. |
| [5] | 张锐, 江静, 徐鸿飞, 杨盛凯, 李亚红, 周靖原, 曾坚贤, 黄小平, 刘鹏飞, 张明明, 李志强. 陶瓷膜分离技术及其在生物制造领域的应用进展[J]. 化工进展, 2024, 43(8): 4550-4561. |
| [6] | 黄思晗, 凌玲, 李佳彬, 李秀芬. 菌剂添加条件下通风量对食品废弃物好氧发酵过程的影响[J]. 化工进展, 2024, 43(7): 4128-4137. |
| [7] | 高飞, 刘志松, 潘珂珂, 刘敏敏, 代斌, 但建明, 于锋. 蛭石基FeCeO x 催化剂及CO选择性催化还原NO[J]. 化工进展, 2024, 43(4): 1851-1862. |
| [8] | 黄超, 任晓洁, 裴疆森, 赵新河, 赵玉斌, 王灵云, 荆宇航. 高产琥珀酸工程菌株E.coli SUC37的代谢途径优化及分析[J]. 化工进展, 2024, 43(12): 6883-6895. |
| [9] | 方崇, 刘云云, 徐惠娟, 周雨, 邱雨心, 巨苗苗. 低碳合成气生物转化及产乙醇发酵工艺探索[J]. 化工进展, 2024, 43(11): 6111-6118. |
| [10] | 尚高原, 余金鹏, 崔凯, 郭坤. 外加电位对高浓度马铃薯淀粉废水电发酵产甲烷系统的影响[J]. 化工进展, 2024, 43(11): 6533-6542. |
| [11] | 全翠, 陈常祥, 高宁博, 陆丽芳. 表面活性剂及聚乳酸塑料对餐厨垃圾发酵产酸特性影响[J]. 化工进展, 2024, 43(10): 5791-5804. |
| [12] | 陈瑶姬, 任成瑜, 胡达清, 卢晗锋, 葛春亮, 崔国凯. 离子液体强化一氧化碳转化[J]. 化工进展, 2024, 43(1): 124-134. |
| [13] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
| [14] | 王雪婷, 顾霞, 徐先宝, 赵磊, 薛罡, 李响. 水热预处理对餐厨垃圾厌氧发酵产戊酸的影响[J]. 化工进展, 2023, 42(9): 4994-5002. |
| [15] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |
