6 |
胡世梯, 姚赛, 易志刚, 等. 餐厨垃圾厌氧沼渣处理及资源化利用研究进展[J]. 四川环境, 2023, 42(4): 366-372.
|
|
HU Shiti, YAO Sai, YI Zhigang, et al. Research progress of biogas residue anaerobic treatment and resource utilization of kitchen waste[J]. Sichuan Environment, 2023, 42(4): 366-372.
|
7 |
高飞, 刘继泉. 正丁酸的生产技术及应用状况[J]. 天津化工, 2006, 20(6): 42-44.
|
|
GAO Fei, LIU Jiquan. Production technology and application of n-butyric acid[J]. Tianjin Chemical Industry, 2006, 20(6): 42-44.
|
8 |
DWIDAR Mohammed, PARK Jae-Yeon, MITCHELL Robert J, et al. The future of butyric acid in industry[J]. The Scientific World Journal, 2012, 2012: 471417.
|
9 |
Hyun Ju OH, KIM Ki-Yeon, LEE Kyung Min, et al. Butyric acid production with high selectivity coupled with acetic acid consumption in sugar-glycerol mixture fermentation by Clostridium tyrobutyricum ATCC25755[J]. Journal of Industrial and Engineering Chemistry, 2019, 75: 44-51.
|
10 |
GUO Xiaolong, LI Xin, FENG Jun, et al. Engineering of Clostridium tyrobutyricum for butyric acid butyl butyrate production from cassava starch[J]. Metabolic Engineering, 2017, 40: 50-58.
|
11 |
AKHTAR Tasleem, HASHMI Abu Saeed, TAYYAB Muhammad, et al. Bioconversion of agricultural waste to butyric acid through solid state fermentation by clostridium tyrobutyricum[J]. Waste and Biomass Valorization, 2020, 11(5): 2067-2073.
|
12 |
XIAO Zhiping, CHENG Chu, BAO Teng, et al. Production of butyric acid from acid hydrolysate of corn husk in fermentation by Clostridium tyrobutyricum: Kinetics and process economic analysis[J]. Biotechnology for Biofuels, 2018, 11: 164.
|
13 |
BAO Teng, FENG Jun, JIANG Wenyan, et al. Recent advances in n-butanol and butyrate production using engineered Clostridium tyrobutyricum [J]. World Journal of Microbiology & Biotechnology, 2020, 36(9): 138.
|
14 |
夏会丽, 陈思思, 陈雄, 等. NADH氧化途径迁移促进丁酸梭状芽孢杆菌的生长[J]. 食品与发酵工业, 2017, 43(10): 63-67.
|
|
XIA Huili, CHEN Sisi, CHEN Xiong, et al. NADH oxidation transfer promotes the growth of Clostridium butyricum [J]. Food and Fermentation Industries, 2017, 43(10): 63-67.
|
15 |
阳丽娟, 代泛, 邵世龙, 等. 荧光碳量子点在生物医学研究中的前沿进展[J]. 中国激光, 2024, 51(3): 185-196.
|
|
YANG Lijuan, DAI Fan, SHAO Shilong, et al. Recent advancements in biomedical research on fluorescent carbon quantum dots[J]. Chinese Journal of Lasers, 2024, 51(3): 185-196.
|
16 |
YUAN Dekai, WANG Ping, YANG Liju, et al. Carbon “quantum” dots for bioapplications[J]. Experimental Biology and Medicine, 2022, 247(4): 300-309.
|
17 |
黎剑辉, 庄少玲. 碳点的制备研究进展[J]. 稀有金属材料与工程, 2019, 48(10): 3401-3416.
|
|
LI Jianhui, ZHUANG Shaoling. Research progress of carbon dots preparation[J]. Rare Metal Materials and Engineering, 2019, 48(10): 3401-3416.
|
18 |
ZHAO Zhiqiang, SUN Cheng, LI Yang, et al. Driving microbial sulfur cycle for phenol degradation coupled with Cr(Ⅵ) reduction via F e ( Ⅲ ) / F e ( Ⅱ ) transformation[J]. Chemical Engineering Journal, 2020, 393: 124801.
|
19 |
PATEL Harshvadan, CHAPLA Digantkumar, SHAH Amita. Bioconversion of pretreated sugarcane bagasse using enzymatic and acid followed by enzymatic hydrolysis approaches for bioethanol production[J]. Renewable Energy, 2017, 109: 323-331.
|
20 |
罗鸿信, 刘惠, 郑育毅, 等. 离子色谱法测定污泥与餐厨垃圾联合厌氧发酵液中有机酸[J]. 环境监测管理与技术, 2014, 26(4): 39-41, 53.
|
|
LUO Hongxin, LIU Hui, ZHENG Yuyi, et al. Determination of organic acids in fermentation broth of anerobic fermentation using combined sludge and food waste by ion chromatography[J]. The Administration and Technique of Environmental Monitoring, 2014, 26(4): 39-41, 53.
|
21 |
KUHNS Martin, Dragan TRIFUNOVIĆ, HUBER Harald, et al. The Rnf complex is a Na+ coupled respiratory enzyme in a fermenting bacterium, Thermotoga maritima [J]. Communications Biology, 2020, 3: 431.
|
22 |
YU Qilin, JIN Xiaochen, ZHANG Yaobin. Sequential pretreatment for cell disintegration of municipal sludge in a neutral bio-electro-Fenton system[J]. Water Research, 2018, 135: 44-56.
|
23 |
FU Hongxin, ZHANG Huihui, GUO Xiaolong, et al. Elimination of carbon catabolite repression in Clostridium tyrobutyricum for enhanced butyric acid production from lignocellulosic hydrolysates[J]. Bioresource Technology, 2022, 357: 127320.
|
1 |
GUSTAVSSON J, CEDERBERG C, SONESSON U, et al. Global food losses and food waste: Extent, causes and prevention[C]// Worlds Agriculture Forestry & Fisheries, 2011.
|
2 |
Olivier JAN, TOSTIVINT C, TURBÉ A, et al. Food wastage footprint: Impacts on natural resources—Summary report[M]. Food & Agriculture Organization of the UN(FAN), 2013.
|
3 |
KOOL Marijn M, SCHOLS Henk A, DELAHAIJE Roy J B M, et al. The influence of the primary and secondary xanthan structure on the enzymatic hydrolysis of the xanthan backbone[J]. Carbohydrate Polymers, 2013, 97(2): 368-375.
|
4 |
GU Yangmo, PARK Seon Young, PARK Ji Yeon, et al. Impact of attrition ball-mill on characteristics and biochemical methane potential of food waste[J]. Energies, 2021, 14(8): 2085.
|
5 |
何侃侃, 曾武, 黄燕冰, 等. 餐厨垃圾生物处理技术研究进展[J]. 广东化工, 2018, 45(24): 25-26.
|
|
HE Kankan, ZENG Wu, HUANG Yanbing, et al. Reviews on the biological treatment technology of food waste[J]. Guangdong Chemical Industry, 2018, 45(24): 25-26.
|
24 |
SUO Yukai, LI Wenyi, WAN Liqiong, et al. Transcriptome analysis reveals reasons for the low tolerance of Clostridium tyrobutyricum to furan derivatives[J]. Applied Microbiology and Biotechnology, 2023, 107(1): 327-339.
|