1 |
ABUBACKAR Haris Nalakath, VEIGA María C, KENNES Christian. Syngas fermentation for bioethanol and bioproducts[M]//Sustainable resource recovery and zero waste approaches. Amsterdam: Elsevier, 2019: 207-221.
|
2 |
ROBAK Katarzyna, BALCEREK Maria. Review of second-generation bioethanol production from residual biomass[J]. Food Technology and Biotechnology, 2018, 56(2): 174-187.
|
3 |
OWOADE Ademola, ALSHAMI Ali S, LEVIN David, et al. Progress and development of syngas fermentation processes toward commercial bioethanol production[J]. Biofuels, Bioproducts and Biorefining, 2023, 17(5): 1328-1342.
|
4 |
曹运齐, 解先利, 郭振强, 等. 木质纤维素预处理技术研究进展[J]. 化工进展, 2020, 39(2): 489-495.
|
|
CAO Yunqi, XIE Xianli, GUO Zhenqiang, et al. Research progress on lignocellulose pretreatment technology[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 489-495.
|
5 |
FRAZÃO Cláudio J R, WALTHER Thomas. Syngas and methanol-based biorefinery concepts[J]. Chemie Ingenieur Technik, 2020, 92(11): 1680-1699.
|
6 |
GRIFFIN Derek W, SCHULTZ Michael A. Fuel and chemical products from biomass syngas: A comparison of gas fermentation to thermochemical conversion routes[J]. Environmental Progress & Sustainable Energy, 2012, 31(2): 219-224.
|
7 |
PHILLIPS John, HUHNKE Raymond, ATIYEH Hasan. Syngas fermentation: A microbial conversion process of gaseous substrates to various products[J]. Fermentation, 2017, 3(2): 28.
|
8 |
PEREZ-CARBAJO J, GÓMEZ-ÁLVAREZ P, BUENO-PEREZ R, et al. Optimisation of the Fischer Tropsch process using zeolites for tail gas separation[J]. Physical Chemistry Chemical Physics, 2014, 16(12): 5678-5688.
|
9 |
WAINAINA Steven, HORVÁTH Ilona Sárvári, TAHERZADEH Mohammad J. Biochemicals from food waste and recalcitrant biomass via syngas fermentation: A review[J]. Bioresource Technology, 2018, 248: 113-121.
|
10 |
KIM Ji-Yeon, LEE Mungyu, Soyoung OH, et al. Acetogen and acetogenesis for biological syngas valorization[J]. Bioresource Technology, 2023, 384: 129368.
|
11 |
DANIELL James, Michael KÖPKE, SIMPSON Séan. Commercial biomass syngas fermentation[J]. Energies, 2012, 5(12): 5372-5417.
|
12 |
ABRINI Jamal, NAVEAU Henry, NYNS Edmond-Jacques. Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide[J]. Archives of Microbiology, 1994, 161(4): 345-351.
|
13 |
ACHARYA Bimal, ROY Poritosh, DUTTA Animesh. Review of syngas fermentation processes for bioethanol[J]. Biofuels, 2014, 5(5): 551-564.
|
14 |
SUN Xiao, ATIYEH Hasan K, HUHNKE Raymond L, et al. Syngas fermentation process development for production of biofuels and chemicals: A review[J]. Bioresource Technology Reports, 2019, 7: 100279.
|
15 |
ABUBACKAR Haris Nalakath, VEIGA María C, KENNES Christian. Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid[J]. Bioresource Technology, 2015, 186: 122-127.
|
16 |
徐惠娟, 梁翠谊, 许敬亮, 等. 合成气发酵梭菌C.autoethanogenum的生长特性与CO发酵性能[J]. 华南理工大学学报(自然科学版), 2014, 42(11): 136-142.
|
|
XU Huijuan, LIANG Cuiyi, XU Jingliang, et al. Growth characteristics and carbon monoxide fermentation performance of Clostridium autoethanogenum [J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(11): 136-142.
|
17 |
XIE Bintao, LIU Ziyong, TIAN Lei, et al. Physiological response of Clostridium ljungdahlii DSM 13528 of ethanol production under different fermentation conditions[J]. Bioresource Technology, 2015, 177: 302-307.
|
18 |
SCHULZ Sarah, MOLITOR Bastian, ANGENENT Largus T. Acetate augmentation boosts the ethanol production rate and specificity by Clostridium ljungdahlii during gas fermentation with pure carbon monoxide[J]. Bioresource Technology, 2023, 369: 128387.
|
19 |
COTTER Jacqueline L, CHINN Mari S, GRUNDEN Amy M. Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas[J]. Enzyme and Microbial Technology, 2009, 44(5): 281-288.
|
20 |
RAJAGOPALAN Srini, DATAR Rohit P, LEWIS Randy S. Formation of ethanol from carbon monoxide via a new microbial catalyst[J]. Biomass and Bioenergy, 2002, 23(6): 487-493.
|
21 |
XU Huijuan, LIANG Cuiyi, YUAN Zhenhong, et al. A study of CO/syngas bioconversion by Clostridium autoethanogenum with a flexible gas-cultivation system[J]. Enzyme and Microbial Technology, 2017, 101: 24-29.
|
22 |
徐惠娟, 吴逸豪, 张敏, 等. 一种用于检测气体采样袋体积的装置及方法: CN113532577A[P]. 2021-10-22.
|
|
XU Huijuan, WU Yihao, ZHANG Min, et al. The invention relates to a device and a method for detecting the volume of a gas sampling bag: CN113532577A[P]. 2021-10-22.
|
23 |
SINHAROY Arindam, PAKSHIRAJAN Kannan, LENS Piet N L. Syngas fermentation for bioenergy production: Advances in bioreactor systems[M]//SINHAROY Arindam, LENS Piet N L, eds. Applied environmental science and engineering for a sustainable future. Cham: Springer, 2022: 325-358.
|
24 |
RAGSDALE Steve W, LJUNGDAHL Lars G. Hydrogenase from acetobacterium woodii[J]. Archives of Microbiology, 1984, 139(4): 361-365.
|
25 |
HURST Kendall M, LEWIS Randy S. Carbon monoxide partial pressure effects on the metabolic process of syngas fermentation[J]. Biochemical Engineering Journal, 2010, 48(2): 159-165.
|
26 |
NORMAN Rupert O J, MILLAT Thomas, SCHATSCHNEIDER Sarah, et al. Genome-scale model of C. autoethanogenum reveals optimal bioprocess conditions for high-value chemical production from carbon monoxide[J]. Engineering Biology, 2019, 3(2): 32-40.
|
27 |
ALLAART Maximilienne T, DIENDER Martijn, SOUSA Diana Z, et al. Overflow metabolism at the thermodynamic limit of life: How carboxydotrophic acetogens mitigate carbon monoxide toxicity[J]. Microbial Biotechnology, 2023, 16(4): 697-705.
|
28 |
HERMANN Maria, TELEKI Attila, WEITZ Sandra, et al. Electron availability in CO2, CO and H2 mixtures constrains flux distribution, energy management and product formation in Clostridium ljungdahlii [J]. Microbial Biotechnology, 2020, 13(6): 1831-1846.
|
29 |
RICHTER H, MOLITOR B, WEI H, et al. Ethanol production in syngas-fermenting Clostridium ljungdahlii is controlled by thermodynamics rather than by enzyme expression[J]. Energy & Environmental Science, 2016, 9(7): 2392-2399.
|
30 |
MOLITOR Bastian, MARCELLIN Esteban, ANGENENT Largus T. Overcoming the energetic limitations of syngas fermentation[J]. Current Opinion in Chemical Biology, 2017, 41: 84-92.
|
31 |
MANN Marcel, MUNCH Garret, REGESTEIN Lars, et al. Cultivation strategies of Clostridium autoethanogenum on xylose and carbon monoxide combination[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2632-2639.
|
32 |
ABUBACKAR Haris Nalakath, Ánxela FERNÁNDEZ-NAVEIRA, VEIGA María C, et al. Impact of cyclic pH shifts on carbon monoxide fermentation to ethanol by Clostridium autoethanogenum [J]. Fuel, 2016, 178: 56-62.
|
33 |
XU Huijuan, LIANG Cuiyi, CHEN Xiaoyan, et al. Impact of exogenous acetate on ethanol formation and gene transcription for key enzymes in Clostridium autoethanogenum grown on CO[J]. Biochemical Engineering Journal, 2020, 155: 107470.
|
34 |
KWON Soo Jae, LEE Joungmin, LEE Hyun Sook. Acetate-assisted carbon monoxide fermentation of Clostridium sp. AWRP[J]. Process Biochemistry, 2022, 113: 47-54.
|
35 |
ZHANG Jie, TAYLOR Steven, WANG Yi. Effects of end products on fermentation profiles in Clostridium carboxidivorans P7 for syngas fermentation[J]. Bioresource Technology, 2016, 218: 1055-1063.
|
36 |
Hongrae IM, AN Taegwang, KWON Rokgyu, et al. Effect of organic nitrogen supplements on syngas fermentation using Clostridium autoethanogenum [J]. Biotechnology and Bioprocess Engineering, 2021, 26(3): 476-482.
|
37 |
MADDOX I S, STEINER E, HIRSCH S, et al. The cause of “acid-crash” and “acidogenic fermentations” during the batch acetone-butanol-ethanol (ABE-) fermentation process[J]. Journal of Molecular Microbiology and Biotechnology, 2000, 2(1): 95-100.
|
38 |
YANG Xuepeng, TU Maobing, XIE Rui, et al. A comparison of three pH control methods for revealing effects of undissociated butyric acid on specific butanol production rate in batch fermentation of Clostridium acetobutylicum[J]. AMB Express, 2013, 3(1): 1-8.
|
39 |
Sara RAMIÓ-PUJOL, Ramon GANIGUÉ, Lluís BAÑERAS, et al. Incubation at 25℃ prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7[J]. Bioresource Technology, 2015, 192: 296-303.
|
40 |
ANGGRAINI Irika Devi, KERYANTI Keryanti, KRESNOWATI Made Tri Ari Penia, et al. Bioethanol production via syngas fermentation of clostridium ljungdahlii in a hollow fiber membrane supported bioreactor[J]. International Journal of Technology, 2019, 10(3): 481-490.
|
41 |
BENEVENUTI Carolina, BRANCO Marcelle, NASCIMENTO-CORREA Mariana DO, et al. Residual gas for ethanol production by Clostridium carboxidivorans in a dual impeller stirred tank bioreactor (STBR)[J]. Fermentation, 2021, 7(3): 199.
|