化工进展 ›› 2025, Vol. 44 ›› Issue (4): 2297-2312.DOI: 10.16085/j.issn.1000-6613.2024-0622
收稿日期:2024-04-12
修回日期:2024-08-05
出版日期:2025-04-25
发布日期:2025-05-07
通讯作者:
李光明
作者简介:周郭宁(2000—),女,硕士研究生,研究方向为固体废弃物资源化。E-mail:2331291@tongji.edu.cn。
基金资助:
ZHOU Guoning(
), ZHU Haochen, HE Wenzhi, LI Guangming(
)
Received:2024-04-12
Revised:2024-08-05
Online:2025-04-25
Published:2025-05-07
Contact:
LI Guangming
摘要:
农业是我国国民经济的基础,而农业的高速发展必然伴随着大量农业废弃物的产生。考虑到农业废弃物在环境污染风险和生物质资源利用价值上的双重属性,利用适当的转化技术对农业废弃物进行处理,可显著提升其经济与环境效益。本文基于农业废弃物的分类组成及其潜在价值,介绍了热化学转化中的水热液化处理技术,并针对主产物(生物原油)产率与品质的影响因素及其分离技术展开深入探讨。分析发现,各影响因素协同效应显著,但相互作用机制尚未明晰;高新分离技术不断涌现,但仍存在局限,尚未实现大规模工业化应用。因此,未来可从反应机理理论体系完善、全产业链布局优化、新型催化剂研发以及各类转化技术耦合等角度出发,充分挖掘水热技术应用于农业废弃物资源化过程的潜力,以期最终实现农业废弃物的高效综合利用。
中图分类号:
周郭宁, 朱昊辰, 贺文智, 李光明. 水热技术用于农业废弃物处理的研究进展Ⅰ:生物原油制备[J]. 化工进展, 2025, 44(4): 2297-2312.
ZHOU Guoning, ZHU Haochen, HE Wenzhi, LI Guangming. Research progress on hydrothermal technology for agricultural waste treatment Ⅰ: Preparation of biocrude oil[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2297-2312.
| 种类 | 纤维素/% | 半纤维素/% | 木质素/% |
|---|---|---|---|
| 小麦秸秆[ | 39.20 | 25.60 | 22.90 |
| 甘蔗渣[ | 39.00 | 24.90 | 23.10 |
| 大麦秸秆[ | 46.00 | 23.00 | 15.00 |
| 稻草秸秆[ | 46.33 | 31.09 | 10.17 |
| 花生秸秆[ | 36.56 | 20.27 | 18.36 |
| 玉米秸秆[ | 30.81 | 25.52 | 16.76 |
| 大豆秸秆[ | 42.39 | 22.05 | 18.93 |
| 橘子皮[ | 12.00 | 14.50 | 2.20 |
| 香蕉皮[ | 11.50 | 25.50 | 9.80 |
表1 典型农业废弃物的组成(质量分数)
| 种类 | 纤维素/% | 半纤维素/% | 木质素/% |
|---|---|---|---|
| 小麦秸秆[ | 39.20 | 25.60 | 22.90 |
| 甘蔗渣[ | 39.00 | 24.90 | 23.10 |
| 大麦秸秆[ | 46.00 | 23.00 | 15.00 |
| 稻草秸秆[ | 46.33 | 31.09 | 10.17 |
| 花生秸秆[ | 36.56 | 20.27 | 18.36 |
| 玉米秸秆[ | 30.81 | 25.52 | 16.76 |
| 大豆秸秆[ | 42.39 | 22.05 | 18.93 |
| 橘子皮[ | 12.00 | 14.50 | 2.20 |
| 香蕉皮[ | 11.50 | 25.50 | 9.80 |
| 国家 | 生物质 | 年产量/t | 产品 |
|---|---|---|---|
| 巴西 | 甘蔗 | 746828157 | 生物乙醇、生物柴油 |
| 印度 尼西亚 | 甘蔗 | 21744000 | 生物气体(沼气)、生物炭、 生物柴油 |
| 喀麦隆 | 玉米 | 332534 | 生物炭、合成气 |
| 柬埔寨 | 玉米 | 10647212 | 生物炭、生物油、合成气 |
| 越南 | 玉米 | 44046250 | 生物炭、生物油、生物气体(沼气) |
| 马来西亚 | 油棕果 | 98419400 | 生物油、生物气体(沼气)、生物炭 |
| 泰国 | 油棕果 | 15400000 | 生物油、合成气 |
| 刚果(金) | 原木 | 4612010 | 生物炭 |
| 尼日利亚 | 原木 | 10032000 | 生物气体(沼气)、生物炭 |
| 澳大利亚 | 原木 | 11618525 | 生物气体(沼气)、生物炭 |
表2 不同国家用于生物能源生产的生物质年产量[15]
| 国家 | 生物质 | 年产量/t | 产品 |
|---|---|---|---|
| 巴西 | 甘蔗 | 746828157 | 生物乙醇、生物柴油 |
| 印度 尼西亚 | 甘蔗 | 21744000 | 生物气体(沼气)、生物炭、 生物柴油 |
| 喀麦隆 | 玉米 | 332534 | 生物炭、合成气 |
| 柬埔寨 | 玉米 | 10647212 | 生物炭、生物油、合成气 |
| 越南 | 玉米 | 44046250 | 生物炭、生物油、生物气体(沼气) |
| 马来西亚 | 油棕果 | 98419400 | 生物油、生物气体(沼气)、生物炭 |
| 泰国 | 油棕果 | 15400000 | 生物油、合成气 |
| 刚果(金) | 原木 | 4612010 | 生物炭 |
| 尼日利亚 | 原木 | 10032000 | 生物气体(沼气)、生物炭 |
| 澳大利亚 | 原木 | 11618525 | 生物气体(沼气)、生物炭 |
| 80 | YADAV Priyanka, REDDY Sivamohan N. Hydrothermal liquefaction of Fe-impregnated water hyacinth for generation of liquid bio-fuels and nano Fe carbon hybrids[J]. Bioresource Technology, 2020, 313: 123691. |
| 81 | DURAK Halil, GENEL Salih. Catalytic hydrothermal liquefaction of lactuca scariola with a heterogeneous catalyst: The investigation of temperature, reaction time and synergistic effect of catalysts[J]. Bioresource Technology, 2020, 309: 123375. |
| 82 | SHI W, LI S, JIN H, et al. The hydrothermal liquefaction of rice husk to bio-crude using metallic oxide catalysts[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2013, 35(22): 2149-2155. |
| 83 | See Cheng YIM, QUITAIN Armando T, YUSUP Suzana, et al. Metal oxide-catalyzed hydrothermal liquefaction of Malaysian oil palm biomass to bio-oil under supercritical condition[J]. The Journal of Supercritical Fluids, 2017, 120: 384-394. |
| 84 | CHEN Dongdong, MA Quanhong, WEI Lingfei, et al. Catalytic hydroliquefaction of rice straw for bio-oil production using Ni/CeO2 catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2018, 130: 169-180. |
| 85 | CHENG Shouyun, WEI Lin, ZHAO Xianhui, et al. Application, deactivation, and regeneration of heterogeneous catalysts in bio-oil upgrading[J]. Catalysts, 2016, 6(12): 195. |
| 86 | YAN Xiuyi, MA Jiuli, WANG Wei, et al. The effect of different catalysts and process parameters on the chemical content of bio-oils from hydrothermal liquefaction of sugarcane bagasse[J]. BioResources, 2018, 13(1): 997-1018. |
| 87 | FENG Li, LI Xuhao, WANG Zizeng, et al. Catalytic hydrothermal liquefaction of lignin for production of aromatic hydrocarbon over metal supported mesoporous catalyst[J]. Bioresource Technology, 2021, 323: 124569. |
| 88 | JIA Pengfei, WANG Juan, ZHANG Weiliang. Catalytic hydrothermal liquefaction of lignin over carbon nanotube supported metal catalysts for production of monomeric phenols[J]. Journal of the Energy Institute, 2021, 94: 1-10. |
| 89 | CAO Maoqi, LONG Chengmei, SUN Sailan, et al. Catalytic hydrothermal liquefaction of peanut shell for the production aromatic rich monomer compounds[J]. Journal of the Energy Institute, 2021, 96: 90-96. |
| 90 | HAGEN Jens. Catalyst shapes and production of heterogeneous catalysts[M]//Industrial Catalysis: A Practical Approach. Hoboke: Wiley, 2015: 211-238. |
| 91 | LEE Ming-Jer, WU Hsien-Tsung, LIN Ho-Mu. Kinetics of catalytic esterification of acetic acid and amyl alcohol over dowex[J]. Industrial & Engineering Chemistry Research, 2000, 39(11): 4094-4099. |
| 1 | POTNURI Ramesh, SURYA Dadi Venkata, RAO Chinta Sankar, et al. A review on analysis of biochar produced from microwave-assisted pyrolysis of agricultural waste biomass[J]. Journal of Analytical and Applied Pyrolysis, 2023, 173: 106094. |
| 2 | 石惠娴, 沈昊文, 潘方慧, 等. 农业废弃物资源化梯次利用低碳模式研究[J]. 安徽农业科学, 2023, 51(3): 209-212, 252. |
| SHI Huixian, SHEN Haowen, PAN Fanghui, et al. Study on low carbon mode of agricultural waste recycling utilization[J]. Journal of Anhui Agricultural Sciences, 2023, 51(3): 209-212, 252. | |
| 3 | 宋刘洋, 丁舒心, 张琪, 等. 农业废弃物资源化利用研究进展[J]. 青海农林科技, 2024(1): 42-46. |
| SONG Liuyang, DING Shuxin, ZHANG Qi, et al. Research progress on the resource utilization of agricultural waste[J]. Science and Technology of Qinghai Agriculture and Forestry, 2024(1): 42-46. | |
| 4 | KOUL Bhupendra, YAKOOB Mohammad, SHAH Maulin P. Agricultural waste management strategies for environmental sustainability[J]. Environmental Research, 2022, 206: 112285. |
| 5 | BRACCO Stefania, CALICIOGLU Ozgul, GOMEZ SAN JUAN Marta, et al. Assessing the contribution of bioeconomy to the total economy: A review of national frameworks[J]. Sustainability, 2018, 10(6): 1698. |
| 6 | GHIAT Ikhlas, MAHMOOD Farhat, GOVINDAN Rajesh, et al. CO2 utilisation in agricultural greenhouses: A novel ‘plant to plant’ approach driven by bioenergy with carbon capture systems within the energy, water and food nexus[J]. Energy Conversion and Management, 2021, 228: 113668. |
| 7 | PERIYASAMY Selvakumar, BEULA ISABEL J, KAVITHA S, et al. Recent advances in consolidated bioprocessing for conversion of lignocellulosic biomass into bioethanol—A review[J]. Chemical Engineering Journal, 2023, 453: 139783. |
| 8 | RASPOLLI GALLETTI Anna Maria, ANTONETTI Claudia, DE LUISE Valentina, et al. Levulinic acid production from waste biomass[J]. BioResources, 2012, 7(2): 1824-1835. |
| 9 | RAINA Neelu, SLATHIA Parvez Singh, SHARMA Preeti. Response surface methodology (RSM) for optimization of thermochemical pretreatment method and enzymatic hydrolysis of deodar sawdust (DS) for bioethanol production using separate hydrolysis and co-fermentation (SHCF)[J]. Biomass Conversion and Biorefinery, 2022, 12(11): 5175-5195. |
| 10 | ZHU Zhe, ROSENDAHL Lasse, TOOR Saqib Sohail, et al. Hydrothermal liquefaction of barley straw to bio-crude oil: Effects of reaction temperature and aqueous phase recirculation[J]. Applied Energy, 2015, 137: 183-192. |
| 92 | CHEN Yongxing, DUAN Peigao, DONG Lin, et al. The study of hydrothermal liquefaction of corn straw with nano ferrite + inorganic base catalyst system at low temperature[J]. Bioresource Technology, 2021, 333: 125185. |
| 93 | KUMAR Mayank, OLAJIRE OYEDUN Adetoyese, KUMAR Amit. A review on the current status of various hydrothermal technologies on biomass feedstock[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1742-1770. |
| 94 | GAO Yan, LIU Songfeng, DU Jianwei, et al. Conversion and extracting bio-oils from rod-shaped cornstalk by sub-critical water[J]. Journal of Analytical and Applied Pyrolysis, 2015, 115: 316-325. |
| 95 | SINGH Rawel, CHAUDHARY Kajal, BISWAS Bijoy, et al. Hydrothermal liquefaction of rice straw: Effect of reaction environment[J]. The Journal of Supercritical Fluids, 2015, 104: 70-75. |
| 96 | DURAK Halil, AYSU Tevfik. Structural analysis of bio-oils from subcritical and supercritical hydrothermal liquefaction of Datura stramonium L[J]. The Journal of Supercritical Fluids, 2016, 108: 123-135. |
| 97 | YIN Sudong, DOLAN Ryan, HARRIS Matt, et al. Subcritical hydrothermal liquefaction of cattle manure to bio-oil: Effects of conversion parameters on bio-oil yield and characterization of bio-oil[J]. Bioresource Technology, 2010, 101(10): 3657-3664. |
| 98 | EL-RUB Z ABU, BRAMER E A, BREM G. Review of catalysts for tar elimination in biomass gasification processes[J]. Industrial & Engineering Chemistry Research, 2004, 43(22): 6911-6919. |
| 99 | SUGANO Motoyuki, TAKAGI Hirokazu, HIRANO Katsumi, et al. Hydrothermal liquefaction of plantation biomass with two kinds of wastewater from paper industry[J]. Journal of Materials Science, 2008, 43(7): 2476-2486. |
| 100 | MATHANKER Ankit, PUDASAINEE Deepak, KUMAR Amit, et al. Hydrothermal liquefaction of lignocellulosic biomass feedstock to produce biofuels: Parametric study and products characterization[J]. Fuel, 2020, 271: 117534. |
| 101 | SASAKI Mitsuru, ADSCHIRI Tadafumi, ARAI Kunio. Production of cellulose Ⅱ from native cellulose by near- and supercritical water solubilization[J]. Journal of Agricultural and Food Chemistry, 2003, 51(18): 5376-5381. |
| 102 | AKHTAR Javaid, AMIN Nor Aishah Saidina. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1615-1624. |
| 103 | LIU Huamin, LI Mingfei, SUN Runcang. Hydrothermal liquefaction of cornstalk: 7-Lump distribution and characterization of products[J]. Bioresource Technology, 2013, 128: 58-64. |
| 11 | TIAN Ye, WANG Feng, DJANDJA Jesuis Oraléou, et al. Hydrothermal liquefaction of crop straws: Effect of feedstock composition[J]. Fuel, 2020, 265: 116946. |
| 12 | SÁNCHEZ OROZCO Raymundo, BALDERAS HERNÁNDEZ Patricia, MORALES Gabriela ROA, et al. Characterization of lignocellulosic fruit waste as an alternative feedstock for bioethanol production[J]. BioResources, 2014, 9(2): 1873-1885. |
| 13 | ATES Burhan, KOYTEPE Suleyman, Ahmet ULU, et al. Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources[J]. Chemical Reviews, 2020, 120(17): 9304-9362. |
| 14 | PERIYASAMY Selvakumar, ASEFA ADEGO Adane, Senthil KUMAR P, et al. Influencing factors and environmental feasibility analysis of agricultural waste preprocessing routes towards biofuel production—A review[J]. Biomass and Bioenergy, 2024, 180: 107001. |
| 15 | Huei Yeong LIM, YUSUP Suzana, Adrian Chun Minh LOY, et al. Review on conversion of lignin waste into value-added resources in tropical countries[J]. Waste and Biomass Valorization, 2021, 12(10): 5285-5302. |
| 16 | OLATUNJI Obafemi, AKINLABI Stephen, OLUSEYI Ajayi, et al. Experimental investigation of thermal properties of lignocellulosic biomass: A review[J]. IOP Conference Series: Materials Science and Engineering, 2018, 413: 012054. |
| 17 | VARJANI Sunita, SHAHBEIG Hossein, POPAT Kartik, et al. Sustainable management of municipal solid waste through waste-to-energy technologies[J]. Bioresource Technology, 2022, 355: 127247. |
| 18 | QUERESHI Shireen, JADHAO Prashant Ram, PANDEY Ashish, et al. Overview of sustainable fuel and energy technologies[M]//Sustainable Fuel Technologies Handbook. Amsterdam: Elsevier, 2021: 3-25. |
| 19 | ZHANG Laibao, BAO Zhenghong, XIA Shunxiang, et al. Catalytic pyrolysis of biomass and polymer wastes[J]. Catalysts, 2018, 8(12): 659. |
| 20 | Hafiz UDDIN M, Minhaz HAQUE M. Preparation and characterization of cellulose nanoparticles from agricultural wastes and their application in polymer composites[J]. Scholars International Journal of Chemistry and Material Sciences, 2023, 6(1): 18-23. |
| 21 | OSMAN Ahmed I, MEHTA Neha, ELGARAHY Ahmed M, et al. Conversion of biomass to biofuels and life cycle assessment: A review[J]. Environmental Chemistry Letters, 2021, 19(6): 4075-4118. |
| 22 | PISHVAEE Mir Saman, MOHSENI Shayan, BAIRAMZADEH Samira. Tactical planning in biofuel supply chain under uncertainty[M]//Biomass to Biofuel Supply Chain Design and Planning under Uncertainty. Amsterdam: Elsevier, 2021: 213-245. |
| 104 | 王刚, 张嘉琪, 朱哲, 等. 水热液化玉米秸秆制备生物油实验及动力学研究[J]. 山东农业大学学报(自然科学版), 2021, 52(4): 697-703. |
| WANG Gang, ZHANG Jiaqi, ZHU Zhe, et al. Experimental study on the preparation of bio-oil from corn straw by hydrothermal liquefaction and kinetics[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2021, 52(4): 697-703. | |
| 105 | LI Rundong, XIE Yinghui, YANG Tianhua, et al. Characteristics of the products of hydrothermal liquefaction combined with cellulosic bio-ethanol process[J]. Energy, 2016, 114: 862-867. |
| 106 | Selhan KARAGÖZ, BHASKAR Thallada, MUTO Akinori, et al. Low-temperature hydrothermal treatment of biomass: Effect of reaction parameters on products and boiling point distributions[J]. Energy & Fuels, 2004, 18(1): 234-241. |
| 107 | CHEMAT Farid, VIAN Maryline Abert, RAVI Harish Karthikeyan, et al. Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects[J]. Molecules, 2019, 24(16): 3007. |
| 108 | ZHAO Bojun, WANG Haoyu, XU Sida, et al. Influence of extraction solvents on the recovery yields and properties of bio-oils from woody biomass liquefaction in sub-critical water, ethanol or water-ethanol mixed solvent[J]. Fuel, 2022, 307: 121930. |
| 109 | MONTESANTOS Nikolaos, MASCHIETTI Marco. Supercritical carbon dioxide extraction of lignocellulosic bio-oils: The potential of fuel upgrading and chemical recovery[J]. Energies, 2020, 13(7): 1600. |
| 110 | WANG Hongqi, GUNAWAN Richard, WANG Zhitao, et al. High-pressure reactive distillation of bio-oil for reduced polymerisation[J]. Fuel Processing Technology, 2021, 211: 106590. |
| 111 | MAHROUS Engy A, FARAG Mohamed A. Trends and applications of molecular distillation in pharmaceutical and food industries[J]. Separation & Purification Reviews, 2022, 51(3): 300-317. |
| 112 | 赵福田. 秸秆生物油组分分离及其改质升级[D]. 焦作: 河南理工大学, 2022. |
| ZHAO Futian. Separation and upgrading of bio-oil components from straw[D]. Jiaozuo: Henan Polytechnic University, 2022. | |
| 113 | 邱祖民, 刘传福, 吴正德, 等. 分子蒸馏技术在高沸点热敏性油脂分离中的应用进展[J]. 南昌大学学报(工科版), 2023, 45(2): 136-143. |
| 23 | PAUL Subhash, DUTTA Animesh. Challenges and opportunities of lignocellulosic biomass for anaerobic digestion[J]. Resources, Conservation and Recycling, 2018, 130: 164-174. |
| 24 | SINGH Rawel, KRISHNA Bhavya B, MISHRA Garima, et al. Strategies for selection of thermo-chemical processes for the valorisation of biomass[J]. Renewable Energy, 2016, 98: 226-237. |
| 25 | IGHALO Joshua O, CONRADIE Jeanet, OHORO Chinemerem R, et al. Biochar from coconut residues: An overview of production, properties, and applications[J]. Industrial Crops and Products, 2023, 204: 117300. |
| 26 | 张林野, 吉帝安, 马志鹏, 等. 生物质水热液化研究现状与展望[J]. 当代化工研究, 2022(20): 10-13. |
| ZHANG Linye, JI Dian, MA Zhipeng, et al. Research status and prospect of biomass hydrothermal liquefaction[J]. Modern Chemical Research, 2022(20): 10-13. | |
| 27 | LIU Zhengang, BALASUBRAMANIAN Rajasekhar. Upgrading of waste biomass by hydrothermal carbonization (HTC) and low temperature pyrolysis (LTP): A comparative evaluation[J]. Applied Energy, 2014, 114: 857-864. |
| 28 | ELLIOTT D C, SCHIEFELBEIN G F. Liquid hydrocarbon fuels from biomass[J]. American Chemical Society, Division of Fuel Chemistry, 1989, 34(4): 1160-1166. |
| 29 | LEMOINE F, MAUPIN Irène, Laurent LEMÉE, et al. Alternative fuel production by catalytic hydroliquefaction of solid municipal wastes, primary sludges and microalgae[J]. Bioresource Technology, 2013, 142: 1-8. |
| 30 | GUO Kang, GUAN Qiyuan, XU Junming, et al. Mechanism of preparation of platform compounds from lignocellulosic biomass liquefaction catalyzed by bronsted acid: A review[J]. Journal of Bioresources and Bioproducts, 2019, 4(4): 202-213. |
| 31 | CHAN Yi Herng, TAN Raymond R, YUSUP Suzana, et al. Comparative life cycle assessment (LCA) of bio-oil production from fast pyrolysis and hydrothermal liquefaction of oil palm empty fruit bunch (EFB)[J]. Clean Technologies and Environmental Policy, 2016, 18(6): 1759-1768. |
| 32 | ALHAZMI Hatem, Adrian Chun Minh LOY. A review on environmental assessment of conversion of agriculture waste to bio-energy via different thermochemical routes: Current and future trends[J]. Bioresource Technology Reports, 2021, 14: 100682. |
| 33 | CAO Leichang, ZHANG Cheng, CHEN Huihui, et al. Hydrothermal liquefaction of agricultural and forestry wastes: State-of-the-art review and future prospects[J]. Bioresource Technology, 2017, 245: 1184-1193. |
| 113 | QIU Zumin, LIU Chuanfu, WU Zhengde, et al. Application progress of the molecular distillation technology in the separation of thermal-sensitive materials with high boiling point[J]. Journal of Nanchang University (Engineering & Technology), 2023, 45(2): 136-143. |
| 34 | 申瑞霞, 赵立欣, 冯晶, 等. 生物质水热液化产物特性与利用研究进展[J]. 农业工程学报, 2020, 36(2): 266-274. |
| SHEN Ruixia, ZHAO Lixin, FENG Jing, et al. Research progress on characteristics and utilization of products from hydrothermal liquefaction of biomass[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(2): 266-274. | |
| 35 | XU Zhixiang, CHENG Jinhong, HE Zhixia, et al. Hydrothermal liquefaction of cellulose in ammonia/water[J]. Bioresource Technology, 2019, 278: 311-317. |
| 36 | GOLLAKOTA Anjani Ravi Kiran, KISHORE Nanda, GU Sai. A review on hydrothermal liquefaction of biomass[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1378-1392. |
| 37 | CHEAH Wai Yan, SANKARAN Revathy, SHOW Pau Loke, et al. Pretreatment methods for lignocellulosic biofuels production: Current advances, challenges and future prospects[J]. Biofuel Research Journal, 2020, 7(1): 1115-1127. |
| 38 | 张洪伟, 张顺元, 张克江. 生物质水热液化研究进展[J]. 生物质化学工程, 2024, 58(1): 67-76. |
| ZHANG Hongwei, ZHANG Shunyuan, ZHANG Kejiang. Research progress in biomass hydrothermal liquefaction[J]. Biomass Chemical Engineering, 2024, 58(1): 67-76. | |
| 39 | COUTO FRAGA Adriano DO, DE ALMEIDA Marlon Brando Bezerra, SOUSA-AGUIAR Eduardo Falabella. Hydrothermal liquefaction of cellulose and lignin: A new approach on the investigation of chemical reaction networks[J]. Cellulose, 2021, 28(4): 2003-2020. |
| 40 | Maria MÖLLER, Uwe SCHRÖDER. Hydrothermal production of furfural from xylose and xylan as model compounds for hemicelluloses[J]. RSC Advances, 2013, 3(44): 22253-22260. |
| 41 | DE LA CONCEPCIÓN Juan García, Fernando MARTÍNEZ R, CINTAS Pedro, et al. Mutarotation of aldoses: Getting a deeper knowledge of a classic equilibrium enabled by computational analyses[J]. Carbohydrate Research, 2020, 490: 107964. |
| 42 | PHAIBOONSILPA Natthanon, CHAMPREDA Verawat, LAOSIRIPOJANA Navadol. Comparative study on liquefaction behaviors of xylan hemicellulose as treated by different hydrothermal methods[J]. Energy Reports, 2020, 6: 714-718. |
| 43 | CAO Yang, CHEN Season S, ZHANG Shicheng, et al. Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery[J]. Bioresource Technology, 2019, 291: 121878. |
| 44 | 程琴, 午紫阳, 马艳, 等. 木质纤维水热液化研究进展[J]. 生物质化学工程, 2023, 57(1): 84-98. |
| CHENG Qin, WU Ziyang, MA Yan, et al. Research progress on hydrothermal liquefaction of lignocellulosic fiber[J]. Biomass Chemical Engineering, 2023, 57(1): 84-98. | |
| 45 | KANG Shimin, LI Xianglan, FAN Juan, et al. Classified separation of lignin hydrothermal liquefied products[J]. Industrial & Engineering Chemistry Research, 2011, 50(19): 11288-11296. |
| 46 | ZOU Shuping, WU Yulong, YANG Mingde, et al. Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake[J]. Energy, 2010, 35(12): 5406-5411. |
| 47 | YAN Weihong, DUAN Peigao, WANG Feng, et al. Composition of the bio-oil from the hydrothermal liquefaction of duckweed and the influence of the extraction solvents[J]. Fuel, 2016, 185: 229-235. |
| 48 | LI Hugang, LU Jianwen, ZHANG Yuanhui, et al. Hydrothermal liquefaction of typical livestock manures in China: Biocrude oil production and migration of heavy metals[J]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 133-140. |
| 49 | Daniel LACHOS-PEREZ, CÉSAR TORRES-MAYANGA Paulo, ABAIDE Ederson R, et al. Hydrothermal carbonization and liquefaction: Differences, progress, challenges, and opportunities[J]. Bioresource Technology, 2022, 343: 126084. |
| 50 | KASHIMALLA Monika, SURABOYINA Sharanya, DUBBAKA Vidya, et al. Optimisation of a catalytic hydrothermal liquefaction process using central composite design for yield improvement of bio-oil[J]. Biomass Conversion and Biorefinery, 2023, 13: 3751-3763. |
| 51 | HOFFMANN Jessica, JENSEN Claus Uhrenholt, ROSENDAHL Lasse Aistrup. Co-processing potential of HTL bio-crude at petroleum refineries—Part 1: Fractional distillation and characterization[J]. Fuel, 2016, 165: 526-535. |
| 52 | CHENG Dan, WANG Lijun, SHAHBAZI Abolghasem, et al. Characterization of the physical and chemical properties of the distillate fractions of crude bio-oil produced by the glycerol-assisted liquefaction of swine manure[J]. Fuel, 2014, 130: 251-256. |
| 53 | Bahar MERYEMOĞLU, Arif HASANOĞLU, IRMAK Sibel, et al. Biofuel production by liquefaction of kenaf (Hibiscus cannabinus L.) biomass[J]. Bioresource Technology, 2014, 151: 278-283. |
| 54 | CHAN Yi Herng, YUSUP Suzana, QUITAIN Armando T, et al. Effect of process parameters on hydrothermal liquefaction of oil palm biomass for bio-oil production and its life cycle assessment[J]. Energy Conversion and Management, 2015, 104: 180-188. |
| 55 | FENG Shanghuan, YUAN Zhongshun, LEITCH Matthew, et al. Hydrothermal liquefaction of barks into bio-crude—Effects of species and ash content/composition[J]. Fuel, 2014, 116: 214-220. |
| 56 | ARUN Jayaseelan, GOPINATH Kannappan Panchamoorthy, SIVARAMAKRISHNAN Ramachandran, et al. Technical insights into the production of green fuel from CO2 sequestered algal biomass: A conceptual review on green energy[J]. Science of the Total Environment, 2021, 755: 142636. |
| 57 | MAHIMA Jain, SUNDARESH Ramesh Kumar, GOPINATH Kannappan Panchamoorthy, et al. Effect of algae (Scenedesmus obliquus) biomass pre-treatment on bio-oil production in hydrothermal liquefaction (HTL): Biochar and aqueous phase utilization studies[J]. Science of the Total Environment, 2021, 778: 146262. |
| 58 | YANG Jie, CHEN Hao, LIU Qi, et al. Is it feasible to replace freshwater by seawater in hydrothermal liquefaction of biomass for biocrude production?[J]. Fuel, 2020, 282: 118870. |
| 59 | BISWAS Bijoy, ARUN KUMAR Aishwarya, BISHT Yashasvi, et al. Role of temperatures and solvents on hydrothermal liquefaction of Azolla filiculoides [J]. Energy, 2021, 217: 119330. |
| 60 | WANG Xin, XIE Xinan, SUN Jiao, et al. Effects of liquefaction parameters of cellulose in supercritical solvents of methanol, ethanol and acetone on products yield and compositions[J]. Bioresource Technology, 2019, 275: 123-129. |
| 61 | DING Yongjie, SHAN Bailin, CAO Xuejuan, et al. Development of bio oil and bio asphalt by hydrothermal liquefaction using lignocellulose[J]. Journal of Cleaner Production, 2021, 288: 125586. |
| 62 | LI Zhixia, CAO Jiangfei, HUANG Kai, et al. Alkaline pretreatment and the synergic effect of water and tetralin enhances the liquefaction efficiency of bagasse[J]. Bioresource Technology, 2015, 177: 159-168. |
| 63 | ZHOU Xinxing, ZHAO Jun, CHEN Meizhu, et al. Influence of catalyst and solvent on the hydrothermal liquefaction of woody biomass[J]. Bioresource Technology, 2022, 346: 126354. |
| 64 | ZHAO Bojun, LI Haoyang, WANG Haoyu, et al. Synergistic effects of metallic Fe and other homogeneous/heterogeneous catalysts in hydrothermal liquefaction of woody biomass[J]. Renewable Energy, 2021, 176: 543-554. |
| 65 | SCARSELLA Marco, DE CAPRARIIS Benedetta, DAMIZIA Martina, et al. Heterogeneous catalysts for hydrothermal liquefaction of lignocellulosic biomass: A review[J]. Biomass and Bioenergy, 2020, 140: 105662. |
| 66 | JIANG Jianchun, XU Junming, SONG Zhanqian. Review of the direct thermochemical conversion of lignocellulosic biomass for liquid fuels[J]. Frontiers of Agricultural Science and Engineering, 2015, 2(1): 13. |
| 67 | HWANG Hyewon, LEE Jae Hoon, CHOI In-Gyu, et al. Comprehensive characterization of hydrothermal liquefaction products obtained from woody biomass under various alkali catalyst concentrations[J]. Environmental Technology, 2019, 40(13): 1657-1667. |
| 68 | HE Qing, DING Lu, GONG Yan, et al. Effect of torrefaction on pinewood pyrolysis kinetics and thermal behavior using thermogravimetric analysis[J]. Bioresource Technology, 2019, 280: 104-111. |
| 69 | SAINI Dinesh Kumar, Amit RAI, DEVI Alka, et al. A multi-objective hybrid machine learning approach-based optimization for enhanced biomass and bioactive phycobiliproteins production in Nostoc sp. CCC-403[J]. Bioresource Technology, 2021, 329: 124908. |
| 70 | ZHU Zhe, TOOR Saqib Sohail, ROSENDAHL Lasse, et al. Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw[J]. Energy, 2015, 80: 284-292. |
| 71 | KAUR Ravneet, BISWAS Bijoy, KUMAR Jitendra, et al. Catalytic hydrothermal liquefaction of castor residue to bio-oil: Effect of alkali catalysts and optimization study[J]. Industrial Crops and Products, 2020, 149: 112359. |
| 72 | SINGH Rawel, BALAGURUMURTHY Bhavya, PRAKASH Aditya, et al. Catalytic hydrothermal liquefaction of water hyacinth[J]. Bioresource Technology, 2015, 178: 157-165. |
| 73 | KIM Seong Ju, Byung Hwan UM. Biocrude production from Korean native kenaf through subcritical hydrothermal liquefaction under mild alkaline catalytic conditions[J]. Industrial Crops and Products, 2020, 145: 112001. |
| 74 | BALLERINI Daniel. Biofuels: Meeting the energy and environmental challenges of the transportation sector[M]. Editions Technip, 2012. |
| 75 | 丁文冉, 李欢, 赵保峰, 等. 农林废弃物生物质水热液化研究探讨[J]. 现代化工, 2021, 41(10): 23-27. |
| DING Wenran, LI Huan, ZHAO Baofeng, et al. Review on hydrothermal liquefaction of agricultural and forestry waste biomass[J]. Modern Chemical Industry, 2021, 41(10): 23-27. | |
| 76 | NAZARI Laleh, YUAN Zhongshun, SOUZANCHI Sadra, et al. Hydrothermal liquefaction of woody biomass in hot-compressed water: Catalyst screening and comprehensive characterization of bio-crude oils[J]. Fuel, 2015, 162: 74-83. |
| 77 | ELKHALIFA Elwathig A, FRIEDRICH Holger B. Magnesium oxide as a catalyst for the dehydrogenation of n-octane[J]. Arabian Journal of Chemistry, 2018, 11(7): 1154-1159. |
| 78 | LONG Jinxing, LI Yingwen, ZHANG Xiong, et al. Comparative investigation on hydrothermal and alkali catalytic liquefaction of bagasse: Process efficiency and product properties[J]. Fuel, 2016, 186: 685-693. |
| 79 | ZHAO Bojun, HU Yulin, QI Liying, et al. Promotion effects of metallic iron on hydrothermal liquefaction of cornstalk in ethanol-water mixed solvents for the production of biocrude oil[J]. Fuel, 2021, 285: 119150. |
| [1] | 周郭宁, 朱昊辰, 贺文智, 李光明. 水热技术用于农业废弃物处理的研究进展Ⅱ:水热炭化[J]. 化工进展, 2025, 44(4): 2313-2327. |
| [2] | 邱泽刚, 石亚斐, 李志勤. 生物质衍生芳香族含氧化合物中C—O键断裂研究进展[J]. 化工进展, 2025, 44(3): 1183-1193. |
| [3] | 廖旭, 王玮, 黄文婷, 熊文涛, 王泽宇, 覃佐东, 林金清. 生物质基催化剂在二氧化碳转化为环状碳酸酯中的研究进展[J]. 化工进展, 2025, 44(2): 834-846. |
| [4] | 方碧瑶, 邱健豪, 李伊馨, 姚建峰. 木质纤维素基生物质炭改性半导体及其光催化应用[J]. 化工进展, 2025, 44(2): 957-970. |
| [5] | 祁帅杰, 黄亚继, 徐鹏程, 齐景伟, 李志远, 时浩, 赵佳琪, 高嘉炜, 刘俊, 张煜尧. 废弃木质建筑模板与典型生物质热解产物分布及特性对比[J]. 化工进展, 2025, 44(2): 1120-1128. |
| [6] | 宋顺明, 张敬雯, 张良清, 邱佳容, 陈剑锋, 曾宪海. 生物质基多元醇催化转化制备二醇[J]. 化工进展, 2025, 44(1): 228-252. |
| [7] | 韩洪晶, 车宇, 田宇轩, 王海英, 张亚男, 陈彦广. 木质素催化氢解催化剂及溶剂的研究进展[J]. 化工进展, 2024, 43(S1): 315-324. |
| [8] | 何世坤, 张荣花, 李昊阳, 潘晖, 冯君锋. 脱铝分子筛固体酸催化葡萄糖制备5-羟甲基糠醛[J]. 化工进展, 2024, 43(S1): 374-381. |
| [9] | 胡婷霞, 赵立欣, 姚宗路, 霍丽丽, 贾吉秀, 谢腾. 双金属催化剂在生物质焦油催化蒸汽重整领域的研究进展[J]. 化工进展, 2024, 43(8): 4354-4365. |
| [10] | 石佳博, 张宇轩, 陈雪峰, 谭蕉君. 单宁酸-纳米协同改性胶原纤维多孔材料的制备及其油水分离性能[J]. 化工进展, 2024, 43(8): 4624-4629. |
| [11] | 张子杭, 王树荣. 生物质热解转化与产物低碳利用研究进展[J]. 化工进展, 2024, 43(7): 3692-3708. |
| [12] | 王颖杰, 祝新利. 溶胶-凝胶法制备高分散Ni-Cu/SiO2 促进间甲酚直接脱氧制甲苯[J]. 化工进展, 2024, 43(7): 3824-3833. |
| [13] | 赵伟刚, 张倩倩, 蓝钰玲, 闫雯, 周晓剑, 范毜仔, 杜官本. 真空绝热板芯材的研究进展与展望[J]. 化工进展, 2024, 43(7): 3910-3922. |
| [14] | 江慧珍, 罗凯, 王艳, 费华, 吴登科, 叶卓铖, 曹雄金. 废弃生物质复合相变材料的构建与应用[J]. 化工进展, 2024, 43(7): 3934-3945. |
| [15] | 闫哲, 刘畅, 王丰旭, 周宏旺, 刘樨, 赵雪冰. 耦合生物质氧化转化的CO2电化学还原[J]. 化工进展, 2024, 43(6): 3310-3321. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |