| 1 |
CHENG Wenhui, DE LA CALLE Alberto, ATWATER Harry A, et al. Hydrogen from sunlight and water: A side-by-side comparison between photoelectrochemical and solar thermochemical water-splitting[J]. ACS Energy Letters, 2021, 6(9): 3096-3113.
|
| 2 |
ZHOU Peng, NAVID Ishtiaque Ahmed, MA Yongjin, et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting[J]. Nature, 2023, 613(7942): 66-70.
|
| 3 |
HISATOMI Takashi, KUBOTA Jun, DOMEN Kazunari. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting[J]. Chemical Society Reviews, 2014, 43(22): 7520-7535.
|
| 4 |
DORFI Anna E, WEST Alan C, ESPOSITO Daniel V. Quantifying losses in photoelectrode performance due to single hydrogen bubbles[J]. The Journal of Physical Chemistry C, 2017, 121(48): 26587-26597.
|
| 5 |
Isaac HOLMES-GENTLE, Franky BEDOYA-LORA, ALHERSH Faye, et al. Optical losses at gas evolving photoelectrodes: Implications for photoelectrochemical water splitting[J]. The Journal of Physical Chemistry C, 2019, 123(1): 17-28.
|
| 6 |
QIN Jingshan, XIE Tianhui, ZHOU Daojin, et al. Kinetic study of electrochemically produced hydrogen bubbles on Pt electrodes with tailored geometries[J]. Nano Research, 2021, 14(7): 2154-2159.
|
| 7 |
HERNÁNDEZ S, BARBERO G, SARACCO G, et al. Considerations on oxygen bubble formation and evolution on BiVO4 porous anodes used in water splitting photoelectrochemical cells[J]. The Journal of Physical Chemistry C, 2015, 119(18): 9916-9925.
|
| 8 |
陈娟雯, 郭烈锦, 胡晓玮, 等. TiO2光电极表面气泡相互作用规律研究[J]. 工程热物理学报, 2018, 39(3): 550-554.
|
|
CHEN Juanwen, GUO Liejin, HU Xiaowei, et al. Study on bubble interaction on TiO2 photoelectrode[J]. Journal of Engineering Thermophysics, 2018, 39(3): 550-554.
|
| 9 |
HU Xiaowei, CAO Zhenshan, WANG Yechun, et al. Single photogenerated bubble at gas-evolving TiO2 nanorod-array electrode[J]. Electrochimica Acta, 2016, 202: 175-185.
|
| 10 |
WANG Mengsha, NIE Tengfei, SHE Yonglu, et al. Study on the behavior of single oxygen bubble regulated by salt concentration in photoelectrochemical water splitting[J]. International Journal of Hydrogen Energy, 2023, 48(61): 23387-23401.
|
| 11 |
XU Qiang, LIANG Liang, NIE Tengfei, et al. Effect of electrolyte pH on oxygen bubble behavior in photoelectrochemical water splitting[J]. The Journal of Physical Chemistry C, 2023, 127(11): 5308-5320.
|
| 12 |
LUO Xinyi, XU Qiang, NIE Tengfei, et al. Influence of subatmospheric pressure on bubble evolution on the TiO2 photoelectrode surface[J]. Physical Chemistry Chemical Physics, 2023, 25(23): 16086-16104.
|
| 13 |
LI Mingbo, MA Xiaotong, EISENER Julian, et al. How bulk nanobubbles are stable over a wide range of temperatures[J]. Journal of Colloid and Interface Science, 2021, 596: 184-198.
|
| 14 |
MA Benchi, LIN Hua, ZHU Yizhou, et al. A new Concentrated Photovoltaic Thermal-Hydrogen system with photocatalyst suspension as optical liquid filter[J]. Renewable Energy, 2022, 194: 1221-1232.
|
| 15 |
冯浩, 张莹, 刘东, 等. 光电化学反应中界面气泡多尺度作用机制的研究进展[J]. 科学通报, 2023, 68(25): 3275-3292.
|
|
FENG Hao, ZHANG Ying, LIU Dong, et al. Advances in multiscale interaction of interfacial gas bubble evolution in photoelectrochemical reactions[J]. Chinese Science Bulletin, 2023, 68(25): 3275-3292.
|
| 16 |
VOGT H. On the gas-evolution efficiency of electrodes Ⅰ-Theoretical[J]. Electrochimica Acta, 2011, 56(3): 1409-1416.
|
| 17 |
VOGT H. On the gas-evolution efficiency of electrodes. Ⅱ-Numerical analysis[J]. Electrochimica Acta, 2011, 56(5): 2404-2410.
|
| 18 |
CAO Zhenshan, ZHANG Bo, FENG Yuyang, et al. Mass transfer mechanism during bubble evolution on the surface of photoelectrode[J]. Electrochimica Acta, 2022, 434: 141293.
|
| 19 |
CAO Zhenshan, FENG Yuyang, ZHANG Bo, et al. Distribution characteristics of multiphysics around the bubble on the surface of photoelectrode[J]. Journal of the Electrochemical Society, 2022, 169(12): 126504.
|
| 20 |
郭烈锦, 曹振山, 王晔春, 等. 太阳能光催化分解水气泡动力学研究进展[J]. 西安交通大学学报, 2023, 57(3): 1-22.
|
|
GUO Liejin, CAO Zhenshan, WANG Yechun, et al. Review of bubble dynamics in solar photocatalytic water splitting[J]. Journal of Xi’an Jiaotong University, 2023, 57(3): 1-22.
|
| 21 |
YANG Xuegeng, KARNBACH Franziska, UHLEMANN Margitta, et al. Dynamics of single hydrogen bubbles at a platinum microelectrode[J]. Langmuir, 2015, 31(29): 8184-8193.
|
| 22 |
ZENG Binglin, CHONG Kai Leong, WANG Yuliang, et al. Periodic bouncing of a plasmonic bubble in a binary liquid by competing solutal and thermal Marangoni forces[J]. Proceedings of the National Academy of Sciences, 2021, 118(23): e2103215118.
|
| 23 |
NIE Tengfei, LI Zhiqing, LUO Xinyi, et al. Single bubble dynamics on a TiO2 photoelectrode surface during photoelectrochemical water splitting[J]. Electrochimica Acta, 2022, 436: 141394.
|
| 24 |
NATH Saurabh, RICARD Guillaume, JIN Panlin, et al. Thermal Marangoni bubbles[J]. Soft Matter, 2022, 18(38): 7422-7426.
|
| 25 |
LIU Ya, JIANG Jiangang, XU Quan, et al. Photoelectrochemical performance of CdS nanorods grafted vertically aligned TiO2 nanorods[J]. Materials Research Bulletin, 2013, 48(11): 4548-4554.
|
| 26 |
FALLISCH Arne, SCHELLHASE Leon, FRESKO Jan, et al. Hydrogen concentrator demonstrator module with 19.8% solar-to-hydrogen conversion efficiency according to the higher heating value[J]. International Journal of Hydrogen Energy, 2017, 42(43): 26804-26815.
|
| 27 |
Damaris FERNÁNDEZ, MAURER Paco, MARTINE Milena, et al. Bubble formation at a gas-evolving microelectrode[J]. Langmuir, 2014, 30(43): 13065-13074.
|
| 28 |
BRANDON N P, KELSALL G H. Growth kinetics of bubbles electrogenerated at microelectrodes[J]. Journal of Applied Electrochemistry, 1985, 15(4): 475-484.
|
| 29 |
MATSUSHIMA Hisayoshi, KIUCHI Daisuke, FUKUNAKA Yasuhiro, et al. Single bubble growth during water electrolysis under microgravity[J]. Electrochemistry Communications, 2009, 11(8): 1721-1723.
|
| 30 |
SCRIVEN L E. On the dynamics of phase growth[J]. Chemical Engineering Science, 1959, 10(1/2): 1-13.
|
| 31 |
ZUBKOV Tykhon, STAHL Dirk, THOMPSON Tracy L, et al. Ultraviolet light-induced hydrophilicity effect on TiO2(110)(1 × 1). dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets[J]. The Journal of Physical Chemistry B, 2005, 109(32): 15454-15462.
|
| 32 |
CAPUTO Gianvito, NOBILE Concetta, KIPP Tobias, et al. Reversible wettability changes in colloidal TiO2 nanorod thin-film coatings under selective UV laser irradiation[J]. The Journal of Physical Chemistry C, 2008, 112(3): 701-714.
|
| 33 |
GAO Yanfeng, MASUDA Yoshitake, KOUMOTO Kunihito. Light-excited superhydrophilicity of amorphous TiO2 thin films deposited in an aqueous peroxotitanate solution[J]. Langmuir, 2004, 20(8): 3188-3194.
|
| 34 |
CHEN Juanwen, GUO Liejin. Nanoscale capillarity for mitigating gas bubble adhesion on arrayed photoelectrode during photoelectrochemical water splitting[J]. Applied Physics Letters, 2019, 114(23): 231604.
|
| 35 |
VOGT H. The role of single-phase free convection in mass transfer at gas evolving electrodes—Ⅱ. Experimental verification[J]. Electrochimica Acta, 1993, 38(10): 1427-1431.
|
| 36 |
VOGT H. On the various types of uncontrolled potential increase in electrochemical reactors—The anode effect[J]. Electrochimica Acta, 2013, 87: 611-618.
|
| 37 |
LOCHIEL A C, CALDERBANK P H. Mass transfer in the continuous phase around axisymmetric bodies of revolution[J]. Chemical Engineering Science, 1964, 19(7): 471-484.
|
| 38 |
LIU Hongbo, PAN Liangming, WEN Jian. Numerical simulation of hydrogen bubble growth at an electrode surface[J]. The Canadian Journal of Chemical Engineering, 2016, 94(1): 192-199.
|
| 39 |
LAX M. Temperature rise induced by a laser beam[J]. Journal of Applied Physics, 1977, 48(9): 3919-3924.
|
| 40 |
VOGT H. Interfacial supersaturation at gas evolving electrodes[J]. Journal of Applied Electrochemistry, 1993, 23(12): 1323-1325.
|
| 41 |
VOGT H. The concentration overpotential of gas evolving electrodes as a multiple problem of mass transfer[J]. Journal of the Electrochemical Society, 1990, 137(4): 1179-1184.
|