化工进展 ›› 2025, Vol. 44 ›› Issue (3): 1228-1242.DOI: 10.16085/j.issn.1000-6613.2024-0450
曹俊雅1(
), 宋恕哲1, 贺鹏2(
), 王利国2,3, 赵雪锋2, 曹妍2, 李会泉2,4
收稿日期:2024-03-19
修回日期:2024-05-17
出版日期:2025-03-25
发布日期:2025-04-16
通讯作者:
贺鹏
作者简介:曹俊雅(1981—),女,副教授,博士生导师,研究方向为环境化工。E-mail:caojy@cumtb.edu.cn。
基金资助:
CAO Junya1(
), SONG Shuzhe1, HE Peng2(
), WANG Liguo2,3, ZHAO Xuefeng2, CAO Yan2, LI Huiquan2,4
Received:2024-03-19
Revised:2024-05-17
Online:2025-03-25
Published:2025-04-16
Contact:
HE Peng
摘要:
我国煤制乙二醇产能快速扩大,过程副产混合醇高值利用是重大需求。本文针对煤制乙二醇副产混合醇分离纯化难题,提出顺序式模拟移动床(SSMB)高效分离工艺。以IPE-18为吸附剂,乙醇/水(体积比1∶9)为洗脱剂,采用Aspen chromatography软件构建了6柱SSMB模型,开展了乙二醇和1,2-丁二醇连续色谱分离动态模拟研究。以三角形理论最佳操作点为初始参数,通过单因素考察优化方法,探索了洗脱液流量和子步骤切换时间对产品纯度及产能的影响规律,获得了最优操作参数和柱内浓度分布动态变化机制。结果显示,在最优参数下,乙二醇纯度和产能分别达到98.29%和0.4303kg/d;1,2-丁二醇纯度和产能分别达到98.11%和0.0972kg/d,实现了二者的高效分离。最后,针对整体工艺开展了技术经济性分析,6柱SSMB的产品单位处理量为1.07kg/d,溶剂消耗为4.04。本文结果将对SSMB分离煤基混合醇工业化放大提供有效支撑。
中图分类号:
曹俊雅, 宋恕哲, 贺鹏, 王利国, 赵雪锋, 曹妍, 李会泉. 顺序式模拟移动床分离煤基混合醇的Aspen色谱动态模拟[J]. 化工进展, 2025, 44(3): 1228-1242.
CAO Junya, SONG Shuzhe, HE Peng, WANG Liguo, ZHAO Xuefeng, CAO Yan, LI Huiquan. Dynamic simulation using Aspen chromatography for sequential simulated moving bed separation of coal-based mixed alcohols[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1228-1242.
| 组件 | 说明 | 模块 |
|---|---|---|
| F&D | 原料液、洗脱液进口 | chrom_injection_feed |
| out | 产品出口 | chrom_product |
| column | 色谱柱 | chrom_r_column |
| pipelines | 模型管路 | chrom_material_connection |
| feed、desorbent | 原料液、洗脱液进口 | chrom_injection_feed |
| extract、raffinate | 提取液、提余液出口 | chrom_product |
| pump | 循环泵 | chrom_r_pump |
| B1、B2 | 流股分布器 | chrom_outlet_select |
| B3、B4 | 流股汇集器 | chrom_inlet_select |
| cycle_organizer | 循环控制器 | cycle_organizer |
表1 色谱模型Aspen模块
| 组件 | 说明 | 模块 |
|---|---|---|
| F&D | 原料液、洗脱液进口 | chrom_injection_feed |
| out | 产品出口 | chrom_product |
| column | 色谱柱 | chrom_r_column |
| pipelines | 模型管路 | chrom_material_connection |
| feed、desorbent | 原料液、洗脱液进口 | chrom_injection_feed |
| extract、raffinate | 提取液、提余液出口 | chrom_product |
| pump | 循环泵 | chrom_r_pump |
| B1、B2 | 流股分布器 | chrom_outlet_select |
| B3、B4 | 流股汇集器 | chrom_inlet_select |
| cycle_organizer | 循环控制器 | cycle_organizer |
| 参数 | 说明 | 数值 |
|---|---|---|
| Hb | 柱长 | 30.0cm |
| Db | 直径 | 1.5cm |
| Ei | 颗粒间孔隙率 | 0.34 |
| Ep | 颗粒内孔隙率 | 0.68 |
| Rp | 颗粒半径 | 0.24mm |
表2 单柱色谱模型参数
| 参数 | 说明 | 数值 |
|---|---|---|
| Hb | 柱长 | 30.0cm |
| Db | 直径 | 1.5cm |
| Ei | 颗粒间孔隙率 | 0.34 |
| Ep | 颗粒内孔隙率 | 0.68 |
| Rp | 颗粒半径 | 0.24mm |
| 参数 | 说明 | 数值 |
|---|---|---|
| Eb(EG) | EG轴向扩散系数 | 0.90cm2/min |
| Eb(1,2-BDO) | 1,2-BDO轴向扩散系数 | 0.39cm2/min |
| kf(EG) | EG有效传质系数 | 0.21cm/min |
| kf(1,2-BDO) | 1,2-BDO有效传质系数 | 0.19cm/min |
| qm(EG) | EG饱和吸附量 | 200.0g/L |
| qm(1,2-BDO) | 1,2-BDO饱和吸附量 | 480.0g/L |
| KA(EG) | EG扩展的Langmuir 系数 | 0.003 |
| KB(1,2-BDO) | 1,2-BDO扩展的Langmuir 系数 | 0.01 |
表3 混合醇吸附热力学和动力学参数
| 参数 | 说明 | 数值 |
|---|---|---|
| Eb(EG) | EG轴向扩散系数 | 0.90cm2/min |
| Eb(1,2-BDO) | 1,2-BDO轴向扩散系数 | 0.39cm2/min |
| kf(EG) | EG有效传质系数 | 0.21cm/min |
| kf(1,2-BDO) | 1,2-BDO有效传质系数 | 0.19cm/min |
| qm(EG) | EG饱和吸附量 | 200.0g/L |
| qm(1,2-BDO) | 1,2-BDO饱和吸附量 | 480.0g/L |
| KA(EG) | EG扩展的Langmuir 系数 | 0.003 |
| KB(1,2-BDO) | 1,2-BDO扩展的Langmuir 系数 | 0.01 |
| t1/min | Pu1,2-BDO /% | PuEG/% | Cap1,2-BDO/kg·d-1 | CapEG/kg·d-1 |
|---|---|---|---|---|
| 6.9 | 81.57 | 99.18 | 0.0945 | 0.3626 |
| 7.9 | 83.55 | 99.77 | 0.1037 | 0.3929 |
| 8.9 | 84.07 | 99.97 | 0.1067 | 0.4202 |
| 9.9 | 83.00 | 96.6 | 0.1014 | 0.4419 |
| 10.9 | 82.02 | 94.58 | 0.0962 | 0.4622 |
表4 以t1为变量设计SSMB单因素优化参数及结果
| t1/min | Pu1,2-BDO /% | PuEG/% | Cap1,2-BDO/kg·d-1 | CapEG/kg·d-1 |
|---|---|---|---|---|
| 6.9 | 81.57 | 99.18 | 0.0945 | 0.3626 |
| 7.9 | 83.55 | 99.77 | 0.1037 | 0.3929 |
| 8.9 | 84.07 | 99.97 | 0.1067 | 0.4202 |
| 9.9 | 83.00 | 96.6 | 0.1014 | 0.4419 |
| 10.9 | 82.02 | 94.58 | 0.0962 | 0.4622 |
| t3/min | Pu1,2-BDO/% | PuEG/% | Cap1,2-BDO/kg·d-1 | CapEG/kg·d-1 |
|---|---|---|---|---|
| 7.9 | 85.25 | 99.90 | 0.1131 | 0.434 |
| 8.1 | 90.15 | 99.94 | 0.1109 | 0.4333 |
| 8.3 | 84.07 | 99.97 | 0.1067 | 0.4202 |
| 8.5 | 71.39 | 99.93 | 0.1018 | 0.3976 |
| 8.7 | 61.32 | 98.22 | 0.0968 | 0.373 |
表5 以t3为变量设计SSMB单因素优化参数及结果
| t3/min | Pu1,2-BDO/% | PuEG/% | Cap1,2-BDO/kg·d-1 | CapEG/kg·d-1 |
|---|---|---|---|---|
| 7.9 | 85.25 | 99.90 | 0.1131 | 0.434 |
| 8.1 | 90.15 | 99.94 | 0.1109 | 0.4333 |
| 8.3 | 84.07 | 99.97 | 0.1067 | 0.4202 |
| 8.5 | 71.39 | 99.93 | 0.1018 | 0.3976 |
| 8.7 | 61.32 | 98.22 | 0.0968 | 0.373 |
| t2/min | Pu1,2-BDO/% | PuEG/% | Cap1,2-BDO/kg·d-1 | CapEG/kg·d-1 |
|---|---|---|---|---|
| 0.3 | 90.15 | 99.94 | 0.1109 | 0.4333 |
| 0.5 | 94.34 | 99.96 | 0.1067 | 0.4350 |
| 0.7 | 96.8 | 99.91 | 0.1019 | 0.4342 |
| 0.9 | 98.11 | 98.29 | 0.0972 | 0.4303 |
| 1.1 | 98.76 | 96.5 | 0.0927 | 0.4256 |
表6 以t2为变量设计SSMB单因素优化参数及结果
| t2/min | Pu1,2-BDO/% | PuEG/% | Cap1,2-BDO/kg·d-1 | CapEG/kg·d-1 |
|---|---|---|---|---|
| 0.3 | 90.15 | 99.94 | 0.1109 | 0.4333 |
| 0.5 | 94.34 | 99.96 | 0.1067 | 0.4350 |
| 0.7 | 96.8 | 99.91 | 0.1019 | 0.4342 |
| 0.9 | 98.11 | 98.29 | 0.0972 | 0.4303 |
| 1.1 | 98.76 | 96.5 | 0.0927 | 0.4256 |
| QD/mL·min-1 | Pu1,2-BDO/% | PuEG/% | Cap1,2-BDO/kg·d-1 | CapEG/kg·d-1 |
|---|---|---|---|---|
| 5.1 | 90.59 | 99.76 | 0.1065 | 0.4213 |
| 5.3 | 96.85 | 99.92 | 0.1027 | 0.4297 |
| 5.5 | 98.11 | 98.29 | 0.0972 | 0.4303 |
| 5.7 | 85.12 | 95.88 | 0.0915 | 0.4150 |
| 5.9 | 66.20 | 94.24 | 0.0858 | 0.3893 |
表7 以QD为变量设计SSMB单因素优化参数及结果
| QD/mL·min-1 | Pu1,2-BDO/% | PuEG/% | Cap1,2-BDO/kg·d-1 | CapEG/kg·d-1 |
|---|---|---|---|---|
| 5.1 | 90.59 | 99.76 | 0.1065 | 0.4213 |
| 5.3 | 96.85 | 99.92 | 0.1027 | 0.4297 |
| 5.5 | 98.11 | 98.29 | 0.0972 | 0.4303 |
| 5.7 | 85.12 | 95.88 | 0.0915 | 0.4150 |
| 5.9 | 66.20 | 94.24 | 0.0858 | 0.3893 |
| 指标 | 数值 |
|---|---|
| 1h内每吨填料混合醇处理量/t | 0.112 |
| 处理1t混合醇冷却负荷/kW | 2902 |
| 处理1t混合醇加热负荷/kW | 1420 |
| 处理1t混合醇电负荷/kW·h-1 | 40 |
| “三废” | 无 |
表8 模拟移动床-精馏混合醇处理工艺指标
| 指标 | 数值 |
|---|---|
| 1h内每吨填料混合醇处理量/t | 0.112 |
| 处理1t混合醇冷却负荷/kW | 2902 |
| 处理1t混合醇加热负荷/kW | 1420 |
| 处理1t混合醇电负荷/kW·h-1 | 40 |
| “三废” | 无 |
| 1 | YANG Qingchun, ZHU Shun, YANG Qing, et al. Comparative techno-economic analysis of oil-based and coal-based ethylene glycol processes[J]. Energy Conversion and Management, 2019, 198: 111814. |
| 2 | YUE Hairong, ZHAO Yujun, MA Xinbin, et al. Ethylene glycol: Properties, synthesis, and applications[J]. Chemical Society Reviews, 2012, 41(11): 4218-4244. |
| 3 | 庞明, 史仪凯, 王文东, 等. 考虑成本约束及功率分配策略的混合储能配置方法[J]. 西北工业大学学报, 2018, 36(4): 679-684. |
| PANG Ming, SHI Yikai, WANG Wendong, et al. Optimal sizing of hybrid energy storage system taking into account economic factors and power allocation[J]. Journal of Northwestern Polytechnical University, 2018, 36(4): 679-684. | |
| 4 | 丰存礼. 国内乙二醇生产工艺技术情况与市场分析[J]. 化工进展, 2013, 32(5): 1200-1204. |
| FENG Cunli. Production technology and market analysis of domestic ethylene glycol[J]. Chemical Industry and Engineering Progress, 2013, 32(5): 1200-1204. | |
| 5 | 储根云, 范英杰, 张大伟, 等. 煤制乙二醇关键单元技术与低碳集成工艺的研究进展[J]. 化工进展, 2022, 41(3): 1654-1666. |
| CHU Genyun, FAN Yingjie, ZHANG Dawei, et al. Progress in key unit technologies and low-carbon integrated processes of coal to ethylene glycol process[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1654-1666. | |
| 6 | 成卫国, 孙剑, 张军平, 等. 环氧乙烷法合成乙二醇的技术创新[J]. 化工进展, 2014, 33(7): 1740-1747. |
| CHENG Weiguo, SUN Jian, ZHANG Junping, et al. Innovation in synthesis of ethylene glycol from ethylene oxide[J]. Chemical Industry and Engineering Progress, 2014, 33(7): 1740-1747. | |
| 7 | 周子淇, 马晟焱, 张东培, 等. 生物质基乙醇酸催化合成进展[J]. 石油炼制与化工, 2023, 54(11): 131-137. |
| ZHOU Ziqi, MA Shengyan, ZHANG Dongpei, et al. Recent advances in catalytic synthesis of biomass-derived glycolic acid[J]. Petroleum Processing and Petrochemicals, 2023, 54(11): 131-137. | |
| 8 | 郁红. 2022年现代煤化工效益两极分化[EB/OL]. (2023-04-18) [2024-01-20]. . |
| YU Hong. Benefits of modern coal chemical industry polarized in 2022[EB/OL]. (2023-04-18) [2024-01-20]. . | |
| 9 | VAN DE BERG W J, VAN DEN BROEKE M R, REIJMER C H, et al. Characteristics of the Antarctic surface mass balance, 1958—2002, using a regional atmospheric climate model[J]. Annals of Glaciology, 2005, 41(1): 97-104. |
| 10 | 王瑞. 化学循环法分离乙二醇和1,2-丁二醇新工艺研究[D]. 天津: 天津大学, 2021. |
| WANG Rui. Research on the Ethylene glycol and 1,2-butanediol chemical looping separation new process[D]. Tianjin: Tianjin University, 2021. | |
| 11 | 王译伟. 酯交换反应辅助分离煤基乙二醇联产碳酸丁烯酯过程研究[D]. 天津: 天津大学, 2020. |
| WANG Yiwei. Process study of transesterification assisted separation of coal-based ethylene glycol with co-production of 1,2-butene carbonate[D]. Tianjin: Tianjin University, 2020. | |
| 12 | 王译伟, 高鑫, 李洪, 等. 化学循环分离煤基乙二醇联产碳酸丁烯酯工艺研究[J]. 现代化工, 2021, 41(9): 206-210. |
| WANG Yiwei, GAO Xin, LI Hong, et al. Study on process for separation of coal-based ethylene glycol with co-production of 1, 2-butylene carbonate by chemical-looping technology[J]. Modern Chemical Industry, 2021, 41(9): 206-210, 214. | |
| 13 | WOOD M A, Willett P, Colley S W, et al. Process for the purification of butane 1,4-DIOL: KR19987007701[P]. 2024-01-21. |
| 14 | LI Hong, ZHAO Zhenyu, QIN Jie, et al. Reversible reaction-assisted intensification process for separating the azeotropic mixture of ethanediol and 1,2-butanediol: Vapor-liquid equilibrium and economic evaluation[J]. Industrial & Engineering Chemistry Research, 2018, 57(14): 5083-5092. |
| 15 | GAO Xin, WANG Yiwei, WANG Rui, et al. Application of dimethyl carbonate assisted chemical looping technology in the separation of the ethylene glycol and 1,2-butanediol mixture and coproduction of 1,2-butene carbonate[J]. Industrial & Engineering Chemistry Research, 2021, 60(5): 2249-2264. |
| 16 | 仪凡, 贺鹏, 曹俊雅, 等. CaY分子筛对乙二醇和1,2-丁二醇吸附分离性能的研究[J]. 过程工程学报, 2022, 22(4): 448-457. |
| YI Fan, HE Peng, CAO Junya, et al. Study on adsorptive separation property of CaY zeolite for ethylene glycol and 1,2-butanediol[J]. The Chinese Journal of Process Engineering, 2022, 22(4): 448-457. | |
| 17 | ANICETO J P S, AZENHA I S, DOMINGUES F M J, et al. Design and optimization of a simulated moving bed unit for the separation of betulinic, oleanolic and ursolic acids mixtures: Experimental and modeling studies[J]. Separation and Purification Technology, 2018, 192: 401-411. |
| 18 | 李敏, 危凤. 新型模拟移动床技术进展[J]. 化工进展, 2011, 30(8): 1651-1657. |
| LI Min, WEI Feng. Advance in novel simulated moving bed technology[J]. Chemical Industry and Engineering Progress, 2011, 30(8): 1651-1657. | |
| 19 | 宋续祺, 金涌, 俞芷青. 移动床技术的现状与发展前景[J]. 化工进展, 1994, 13(3): 40-45. |
| SONG Xuqi, JIN Yong, YU Zhiqing. Present status and development of moving bed technique[J]. Chemical Industry and Engineering Progress, 1994, 13(3): 40-45. | |
| 20 | LIANG Ming Tsai, LIN Chih-Hsiung, TSAI Pei-Ying, et al. The separation of butanediol and propanediol by simulated moving bed[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 61: 12-19. |
| 21 | WU Chengkun, XU Yuanzhi, BAI Zhiyuan, et al. High-purity tri-alpha-linolenin isolation from silkworm pupae oil using sequential simulated moving bed chromatography[J]. Biomass Conversion and Biorefinery, 2023, 13(18): 16453-16466. |
| 22 | 于伟, 李良玉, 李朝阳, 等. 顺序式模拟移动色谱分离木糖醇母液的前处理工艺研究[J]. 中国食品添加剂, 2015, 26(10): 70-76. |
| YU Wei, LI Liangyu, LI Chaoyang, et al. Study on the pretreatment of xylitol mother liquor separated by sequential simulated moving bed chromatography[J]. China Food Additives, 2015, 26(10): 70-76. | |
| 23 | 李良玉, 孙蕊, 李朝阳, 等. 顺序式模拟移动色谱纯化木糖醇母液[J]. 天然产物研究与开发, 2015, 27(10): 1789-1793. |
| LI Liangyu, SUN Rui, LI Chaoyang, et al. Purification of xylitol mother liquid using sequential simulated moving bed chromatography[J]. Natural Product Research and Development, 2015, 27(10): 1789-1793. | |
| 24 | 李洪飞, 孙大庆, 李良玉, 等. 基于顺序式模拟移动床色谱法的两种木糖母液分离工艺比较[J]. 食品与机械, 2019, 35(10): 210-213. |
| LI Hongfei, SUN Daqing, LI Liangyu, et al. Comparing of two seperation processes for recovering xylose mother liquor with sequential simulated moving bed technology[J]. Food & Machinery, 2019, 35(10): 210-213. | |
| 25 | LI Yan, YU Weifang, DING Ziyuan, et al. Equilibrium and kinetic differences of XOS2-XOS7 in xylo-oligosaccharides and their effects on the design of simulated moving bed purification process[J]. Separation and Purification Technology, 2019, 215: 360–367. |
| 26 | 李艳, 凌山, 刘聚明, 等. 顺序式模拟移动床分离低聚木糖多目标优化及其变量调控机制[J]. 现代化工, 2023, 43(1): 240-245. |
| LI Yan, LING Shan, LIU Juming, et al. Multi-objective optimization of sequentially-simulated moving bed for separation of xylo-oligosaccharides and its variables regulation mechanism[J]. Modern Chemical Industry, 2023, 43(1): 240-245. | |
| 27 | 陈永涛. 顺序式模拟移动床分离果葡糖浆的过程研究[D]. 温州: 温州大学, 2017. |
| CHEN Yongtao. Study of the seperation process of fructose syrup by sequential simulated moving bed[D]. Wenzhou: Wenzhou University, 2017. | |
| 28 | LI Yan, DING Ziyuan, WANG Jian, et al. A comparison between simulated moving bed and sequential simulated moving bed system based on multi-objective optimization[J]. Chemical Engineering Science, 2020, 219: 115562. |
| 29 | LEE Ju Weon, Kyung Ho ROW. Prediction of the gradient retention times of purine compounds in reversed phase high performance liquid chromatography[J]. Journal of Liquid Chromatography & Related Technologies, 2008, 31(16): 2401-2416. |
| 30 | Raimund BÜRGER, MULET Pep, RUBIO Lihki, et al. Linearly implicit-explicit schemes for the equilibrium dispersive model of chromatography[J]. Applied Mathematics and Computation, 2018, 317: 172-186. |
| 31 | VAJDA Péter, BOCIAN Szymon, BUSZEWSKI Bogusław, et al. Examination of the surface heterogeneity of reversed-phase packing materials with solvent adsorption[J]. Journal of Separation Science, 2010, 33(23/24): 3644-3654. |
| 32 | 魏朋, 陈珺, 王志国, 等. 基于双部分丢弃的模拟移动床产率提高策略[J]. 化工学报, 2022, 73(7): 3099-3108. |
| WEI Peng, CHEN Jun, WANG Zhiguo, et al. Improved productivity strategy of simulated moving bed based on binary-partial-discard[J]. CIESC Journal, 2022, 73(7): 3099-3108. | |
| 33 | DUAN G, CHING C B, SWARUP S. Kinetic and equilibrium study of the separation of propranolol enantiomers by high performance liquid chromatography on a chiral adsorbent[J]. Chemical Engineering Journal, 1998, 69(2): 111-117. |
| 34 | POOLE Colin F. Fundamentals of preparative and nonlinear chromatography[J]. Analytica Chimica Acta, 1995, 302(1): 127-128. |
| 35 | MUKHOPADHYAY Sumit, TSANG Yvonne W, FINSTERLE Stefan. Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling[J]. Water Resources Research, 2009, 45(4): W04414. |
| 36 | QAMAR Shamsul, ABBASI Javeria Nawaz, MEHWISH Aqsa, et al. Linear general rate model of chromatography for core-shell particles: Analytical solutions and moment analysis[J]. Chemical Engineering Science, 2015, 137: 352-363. |
| 37 | 栗祥祥. 乙二醇和1,2-丁二醇色谱分离的应用基础研究[D]. 北京: 北京化工大学, 2022. |
| LI Xiangxiang. Applied basic research on chromatographic separation of ethylene glycol and 1,2-butanediol[D]. Beijing: Beijing University of Chemical Technology, 2022. | |
| 38 | LEE Chung-Gi, Cheol Yeon JO, LEE Ki Bong, et al. Improving the performances of a simulated-moving-bed process for separation of acetoin and 2,3-butanediol by the use of an adsorbent for minimizing the extent of 2,3-butanediol isomerism[J]. Separation and Purification Technology, 2020, 248: 116922. |
| 39 | KACZMARSKI Krzysztof, ANTOS Dorota, SAJONZ Hong, et al. Comparative modeling of breakthrough curves of bovine serum albumin in anion-exchange chromatography[J]. Journal of Chromatography A, 2001, 925(1/2): 1-17. |
| 40 | KIM Young Sik, LEE Chong Ho, WANKAT Phillip C, et al. Comparing the performance of one-column process and four-zone simulated moving bed by computer simulation[J]. Biotechnology and Bioprocess Engineering, 2004, 9(5): 362-368. |
| 41 | MAO Shimin, ZHANG Yan, ROHANI Sohrab, et al. Enantioseparation of racemic mandelic acid by simulated moving bed chromatography using Chiralcel-OD column[J]. The Canadian Journal of Chemical Engineering, 2014, 92(7): 1283-1292. |
| 42 | MIGLIORINI Cristiano, MAZZOTTI Marco, MORBIDELLI Massimo. Continuous chromatographic separation through simulated moving beds under linear and nonlinear conditions[J]. Journal of Chromatography A, 1998, 827(2): 161-173. |
| 43 | TANGPROMPHAN Preuk, BUDMAN Hector, JAREE Attasak. A simplified strategy to reduce the desorbent consumption and equipment installed in a three-zone simulated moving bed process for the separation of glucose and fructose[J]. Chemical Engineering and Processing- Process Intensification, 2018, 126: 23-37. |
| 44 | GENTILINI Andrea, MIGLIORINI Cristiano, MAZZOTTI Marco, et al. Optimal operation of simulated moving-bed units for non-linear chromatographic separations[J]. Journal of Chromatography A, 1998, 805(1/2): 37-44. |
| 45 | 王德华, 王辉国. 模拟移动床技术进展[J]. 化工进展, 2004, 23(6): 609-614, 640. |
| WANG Dehua, WANG Huiguo. Progress of simulated moving-bed technology[J]. Chemical Industry and Engineering Progress, 2004, 23(6): 609-614, 640. | |
| 46 | FELINGER Attila, ZHOU Dongmei, GUIOCHON Georges. Determination of the single component and competitive adsorption isotherms of the 1-indanol enantiomers by the inverse method[J]. Journal of Chromatography A, 2003, 1005(1/2): 35-49. |
| 47 | CHUNG S F, WEN C Y. Longitudinal dispersion of liquid flowing through fixed and fluidized beds[J]. AIChE Journal, 1968, 14(6): 857-866. |
| 48 | WILSON E J, GEANKOPLIS C J. Liquid mass transfer at very low Reynolds numbers in packed beds[J]. Industrial & Engineering Chemistry Fundamentals, 1966, 5(1): 9-14. |
| 49 | MACKIE J S, MEARES P. The diffusion of electrolytes in a cation-exchange resin membrane Ⅰ. Theoretical[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1955, 232(1191): 498-509. |
| 50 | WILKE C R, CHANG Pin. Correlation of diffusion coefficients in dilute solutions[J]. AIChE Journal, 1955, 1(2): 264-270. |
| [1] | 王奇, 张乾, 杨凯, 高晨明, 孙岳鹏, 黄伟. 煤气化渣提炭分质用于橡胶补强填充料[J]. 化工进展, 2025, 44(3): 1749-1757. |
| [2] | 崔悦, 李玉凤, 李伟, 黄业千, 魏蓓. 数字孪生在油气田地面系统的研究进展及展望[J]. 化工进展, 2025, 44(3): 1194-1205. |
| [3] | 王雪莉, 杨卫亚, 张会成, 王少军, 凌凤香. 金属有机框架(MOF)基混合基质膜界面改性方法及其气体分离性能[J]. 化工进展, 2025, 44(2): 928-940. |
| [4] | 杨璐, 魏海琴, 袁浩博, 高志华, 黄伟, 王晓东. 合成液中水含量调控Ge-ZSM-5膜的乙二醇脱水性能[J]. 化工进展, 2025, 44(2): 982-990. |
| [5] | 张强, 孙楠, 郑俊杰, 吴强, 刘传海, 李元吉. 混合热力学促进剂对水合物法分离回收瓦斯的影响[J]. 化工进展, 2025, 44(1): 192-201. |
| [6] | 焦芮, 周涛, 孙寒雪, 李吉焱, 朱照琪, 李安. 多孔材料用于废水中放射性核素吸附的研究进展[J]. 化工进展, 2025, 44(1): 354-366. |
| [7] | 周渝, 唐甜, 熊子悠, 韦奇. 基于两级微通道分离工艺的甲醇制烯烃废水深度处理[J]. 化工进展, 2025, 44(1): 100-108. |
| [8] | 苏宣合, 蒙仕达, 柯杰坤, 卢苇. 基于分子交换流的多级气体分离系统性能与能耗分析[J]. 化工进展, 2025, 44(1): 109-120. |
| [9] | 谢钰麟, 饶瑞晔, 黄建, 蒿佳怡, 王友益, 黄琦. 连续ZIF-8膜制备及在氢气分离中的研究进展[J]. 化工进展, 2024, 43(S1): 403-418. |
| [10] | 周渝, 夏太阳, 韦奇, 唐甜, 田磊. 微通道耦合反渗透膜串联处理甲醇制烯烃废水工艺优化[J]. 化工进展, 2024, 43(S1): 43-51. |
| [11] | 薛立新, 涂龙斗, 李士洋, 郑晨晨, 蔡达健, 高从堦. 包含原位生长ZIF-L粒子的PEI基高效染料脱盐混合基质纳滤膜[J]. 化工进展, 2024, 43(S1): 431-442. |
| [12] | 何方, 许高洁, 裴翔, 孙德智, 宁朋歌, 曹宏斌. IPE-23萃取剂在含锂废液中回收锂的应用[J]. 化工进展, 2024, 43(S1): 627-639. |
| [13] | 耿秀梅, 张逢, 张翔, 单美霞, 张亚涛. 用于CO2分离的Pebax基混合基质膜稳定性研究进展[J]. 化工进展, 2024, 43(9): 4996-5012. |
| [14] | 张玉凤, 庞煜骞, 裴浩楠, 樊小青. 三种朝向链基有机骨架对天然气中C2~C3的分离[J]. 化工进展, 2024, 43(9): 5185-5192. |
| [15] | 王亚男, 刘琳琳, 庄钰, 都健. 基于代理模型的环氧乙烷制乙二醇工艺优化同步热集成[J]. 化工进展, 2024, 43(9): 5234-5241. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |