化工进展 ›› 2025, Vol. 44 ›› Issue (2): 982-990.DOI: 10.16085/j.issn.1000-6613.2024-0216
杨璐(), 魏海琴, 袁浩博, 高志华, 黄伟, 王晓东(
)
收稿日期:
2024-01-29
修回日期:
2024-03-19
出版日期:
2025-02-25
发布日期:
2025-03-10
通讯作者:
王晓东
作者简介:
杨璐(1997 —),女,硕士研究生,研究方向为液体分离膜。E-mail:934665400@qq.com。
基金资助:
YANG Lu(), WEI Haiqin, YUAN Haobo, GAO Zhihua, HUANG Wei, WANG Xiaodong(
)
Received:
2024-01-29
Revised:
2024-03-19
Online:
2025-02-25
Published:
2025-03-10
Contact:
WANG Xiaodong
摘要:
采用原位水热晶化法在两种氧化铝载体上制备Ge-ZSM-5膜。利用扫描电子显微镜(SEM)、能量色散光谱(EDS)及X射线衍射(XRD)对膜进行表征。考察合成液中水含量对膜的微结构及膜对乙二醇溶液渗透汽化分离性能的影响。结果表明,水含量较少时,膜表面为分子筛晶体;增加水含量,膜表面晶体逐渐被无定形物质覆盖,最终无定形物质可形成连续层,此时膜的分离性能最好;水含量较高时,膜层不连续。合成液中水含量增加,膜中铝含量升高,而锗含量降低,膜的分离性能逐渐优化。在更易于溶出铝元素的载体上,膜中铝元素含量较高,分离性能更好。在分离性能最好的Ge-ZSM-5膜上,30℃时,对于水质量分数为1%~35%的乙二醇溶液,其水渗透通量为35.7~116.7g/(m2·h),分离因子为1138.5~46.5,该膜对高浓度乙二醇溶液脱水具有应用潜力。
中图分类号:
杨璐, 魏海琴, 袁浩博, 高志华, 黄伟, 王晓东. 合成液中水含量调控Ge-ZSM-5膜的乙二醇脱水性能[J]. 化工进展, 2025, 44(2): 982-990.
YANG Lu, WEI Haiqin, YUAN Haobo, GAO Zhihua, HUANG Wei, WANG Xiaodong. Water content in the synthesis solution regulates the dehydration performance of Ge-ZSM-5 membranes for ethylene glycol solution[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 982-990.
合成液H2O/TPAOH | 膜中Si/Al | 膜中Si/Ge |
---|---|---|
438 | 185.85 | 101.55 |
481 | 83.12 | 129.03 |
485 | 74.83 | 144.14 |
表1 在125nm孔径的载体a上由不同H2O含量的合成液制备的Ge-ZSM-5分子筛膜的EDS数据
合成液H2O/TPAOH | 膜中Si/Al | 膜中Si/Ge |
---|---|---|
438 | 185.85 | 101.55 |
481 | 83.12 | 129.03 |
485 | 74.83 | 144.14 |
合成液H2O/TPAOH | 膜中Si/Al | 膜中Si/Ge |
---|---|---|
438 | 107.13 | 189.53 |
481 | 74.38 | 196.36 |
485 | 65.41 | 245.28 |
表2 在500nm孔径的载体b上由不同H2O含量的合成液制备的Ge-ZSM-5分子筛膜的EDS数据
合成液H2O/TPAOH | 膜中Si/Al | 膜中Si/Ge |
---|---|---|
438 | 107.13 | 189.53 |
481 | 74.38 | 196.36 |
485 | 65.41 | 245.28 |
合成液H2O/TPAOH | 操作温度/℃ | 进料水 质量分数/% | 渗透通量 /g·m-2·h-1 | 分离因子 |
---|---|---|---|---|
438① | 30 | 15 | 237.7 | 45.9 |
481① | 30 | 15 | 75.7 | 60.7 |
485① | 30 | 15 | 68.4 | 73.5 |
438② | 30 | 15 | 248.6 | 51.0 |
481② | 30 | 15 | 86.0 | 67.4 |
485② | 30 | 15 | 81.5 | 88.8 |
表3 由不同H2O含量的合成液制备的Ge-ZSM-5分子筛膜的对乙二醇溶液分离效果
合成液H2O/TPAOH | 操作温度/℃ | 进料水 质量分数/% | 渗透通量 /g·m-2·h-1 | 分离因子 |
---|---|---|---|---|
438① | 30 | 15 | 237.7 | 45.9 |
481① | 30 | 15 | 75.7 | 60.7 |
485① | 30 | 15 | 68.4 | 73.5 |
438② | 30 | 15 | 248.6 | 51.0 |
481② | 30 | 15 | 86.0 | 67.4 |
485② | 30 | 15 | 81.5 | 88.8 |
膜种类 | 温度/℃ | 进料水质量分数/% | 渗透通量/g·m-2·h-1 | 分离因子 | 参考文献 |
---|---|---|---|---|---|
PVA | 30 | 10 | 26 | 802 | [ |
CS/PVA/GO | 50 | 5 | 630 | 204.7 | [ |
HBPE/PVA | 25 | 10 | 43.8 | 312 | [ |
HAS/PPO | 50 | 10 | 20.6 | 11240 | [ |
PEI/GO | 35 | 1 | 92 | 375 | [ |
AO-PIM-1 | 60 | 20 | 589.7 | 477.9 | [ |
GO/PPO | 22 | 10 | 78 | 4491 | [ |
NaA/PVA | 70 | 20 | 960 | 1520 | [ |
NaA | 80 | 10 | 7160 | 10996 | [ |
ZSM-5 | 80 | 10 | 105.6 | 121.8 | [ |
Ge-ZSM-5 | 30 | 1 | 38.8 | 1138.5 | 本工作 |
Ge-ZSM-5 | 30 | 5 | 63.7 | 294.5 | 本工作 |
Ge-ZSM-5 | 30 | 15 | 81.5 | 88.8 | 本工作 |
表4 膜分离乙二醇水溶液分离性能对比
膜种类 | 温度/℃ | 进料水质量分数/% | 渗透通量/g·m-2·h-1 | 分离因子 | 参考文献 |
---|---|---|---|---|---|
PVA | 30 | 10 | 26 | 802 | [ |
CS/PVA/GO | 50 | 5 | 630 | 204.7 | [ |
HBPE/PVA | 25 | 10 | 43.8 | 312 | [ |
HAS/PPO | 50 | 10 | 20.6 | 11240 | [ |
PEI/GO | 35 | 1 | 92 | 375 | [ |
AO-PIM-1 | 60 | 20 | 589.7 | 477.9 | [ |
GO/PPO | 22 | 10 | 78 | 4491 | [ |
NaA/PVA | 70 | 20 | 960 | 1520 | [ |
NaA | 80 | 10 | 7160 | 10996 | [ |
ZSM-5 | 80 | 10 | 105.6 | 121.8 | [ |
Ge-ZSM-5 | 30 | 1 | 38.8 | 1138.5 | 本工作 |
Ge-ZSM-5 | 30 | 5 | 63.7 | 294.5 | 本工作 |
Ge-ZSM-5 | 30 | 15 | 81.5 | 88.8 | 本工作 |
1 | KANDASAMY Shalini, SAMUDRALA Shanthi Priya, BHATTACHARYA Sankar. The route towards sustainable production of ethylene glycol from a renewable resource, biodiesel waste: A review[J]. Catalysis Science & Technology, 2019, 9(3): 567-577. |
2 | PANDA Smaranika, FUNG Vincent Yuen Kin, ZHOU Jie Fu J, et al. Improving ethylene glycol utilization in Escherichia coli fermentation[J]. Biochemical Engineering Journal, 2021, 168: 107957. |
3 | ENJAMURI Nagasuresh, DARBHA Srinivas. Advances in catalytic conversion of lignocellulosic biomass to ethylene glycol[J]. Catalysis Reviews, 2022: 4,66(4):1137-1207. |
4 | ZHANG Weixin, YING Yunpan, MA Jing, et al. Mixed matrix membranes incorporated with polydopamine-coated metal-organic framework for dehydration of ethylene glycol by pervaporation[J]. Journal of Membrane Science, 2017, 527: 8-17. |
5 | HALAKOO Elnaz, FENG Xianshe. Self-assembled membranes from polyethylenimine and graphene oxide for pervaporation dehydration of ethylene glycol[J]. Journal of Membrane Science, 2020, 616: 118583. |
6 | ROSTOVTSEVA Valeriia, FAYKOV Ilya, PULYALINA Alexandra. A review of recent developments of pervaporation membranes for ethylene glycol purification[J]. Membranes, 2022, 12(3): 312. |
7 | 王杰, 陈明, 李梅生, 等. 聚乙烯醇/聚多巴胺-氮化碳渗透汽化复合膜的制备[J]. 膜科学与技术, 2018, 38(2): 37-44. |
WANG Jie, CHEN Ming, LI Meisheng, et al. Preparation of poly(vinyl alcohol)/polydopamine-graphitic carbon nitride nanocomposite membranes for pervaporation dehydration[J]. Membrane Science and Technology, 2018, 38(2): 37-44. | |
8 | 徐南平, 高从堦, 金万勤. 中国膜科学技术的创新进展[J]. 中国工程科学, 2014, 16(12): 4-9. |
XU Nanping, GAO Congjie, JIN Wanqin. Innovations of membrane science and technology in China[J]. Engineering Sciences, 2014, 16(12): 4-9. | |
9 | HYDER M N, CHEN P. Pervaporation dehydration of ethylene glycol with chitosan-poly(vinyl alcohol) blend membranes: Effect of CS-PVA blending ratios[J]. Journal of Membrane Science, 2009, 340(1/2): 171-180. |
10 | Yit Thai ONG, TAN Soon Huat. Synthesis of the novel symmetric buckypaper supported ionic liquid membrane for the dehydration of ethylene glycol by pervaporation[J]. Separation and Purification Technology, 2015, 143: 135-145. |
11 | BURSHE M C, SAWANT S B, JOSHI J B, et al. Dehydration of ethylene glycol by pervaporation using hydrophilic IPNs of PVA, PAA and PAAM membranes[J]. Separation and Purification Technology, 1998, 13(1): 47-56. |
12 | SHAHVERDI Mahnaz, MOHAMMADI Toraj, Afshin PAK. Separation of ethylene glycol-water mixtures with composite poly(vinyl alcohol)-polypropylene membranes[J]. Journal of Applied Polymer Science, 2011, 119(3): 1704-1710. |
13 | GUO Ruili, FANG Xin, WU Hong, et al. Preparation and pervaporation performance of surface crosslinked PVA/PES composite membrane[J]. Journal of Membrane Science, 2008, 322(1): 32-38. |
14 | SUN De, YANG Ping, SUN Hualong, et al. Preparation and characterization of cross-linked poly (vinyl alcohol)/hyperbranched polyester membrane for the pervaporation dehydration of ethylene glycol solution[J]. European Polymer Journal, 2015, 62: 155-166. |
15 | ROSTOVTSEVA Valeriia, PULYALINA Alexandra, RUDAKOVA Daria, et al. Strongly selective polymer membranes modified with heteroarm stars for the ethylene glycol dehydration by pervaporation[J]. Membranes, 2020, 10(5): 86. |
16 | DMITRENKO Mariia, CHEPELEVA Anastasia, LIAMIN Vladislav, et al. Novel mixed matrix membranes based on polyphenylene oxide modified with graphene oxide for enhanced pervaporation dehydration of ethylene glycol[J]. Polymers, 2022, 14(4): 691. |
17 | LI Zhelun, BAIG Absar, SHAHIDI Kazem, et al. Chitosan/poly(vinyl alcohol)/graphene oxide mixed matrix membrane for the pervaporation dehydration of ethylene glycol[J]. Journal of Polymer Research, 2023, 30(6): 198. |
18 | SABZEVARI Omid, MARJANI Azam, DARIPOUR Amirmohammad. Polyamide/nano mixed matrix membranes for pervaporation dehydration ethylene glycols[J]. Oriental Journal of Chemistry, 2015, 31(2): 1091-1098. |
19 | MARJANI Azam. Separation of water from ethylene glycol using polyvinyl alcohol-zeolite composite membrane[J]. Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42(3): 1209-1214. |
20 | SHAHVERDI Mahnaz, BAHERI Bahareh, REZAKAZEMI Mashallah, et al. Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes[J]. Polymer Engineering & Science, 2013, 53(7): 1487-1493. |
21 | BAHERI Bahareh, SHAHVERDI Mahnaz, REZAKAZEMI Mashallah, et al. Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation[J]. Chemical Engineering Communications, 2015, 202(3): 316-321. |
22 | YU Congli, ZHONG Chao, LIU Yanmei, et al. Pervaporation dehydration of ethylene glycol by NaA zeolite membranes[J]. Chemical Engineering Research and Design, 2012, 90(9): 1372-1380. |
23 | JAFARI Mostafa, NOURI Amir, MOUSAVI Seyed Foad, et al. Optimization of synthesis conditions for preparation of ceramic (A-type zeolite) membranes in dehydration of ethylene glycol[J]. Ceramics International, 2013, 39(6): 6971-6979. |
24 | JAFARI Mostafa, BAYAT Arash, MOHAMMADI Toraj, et al. Dehydration of ethylene glycol by pervaporation using gamma alumina/NaA zeolite composite membrane[J]. Chemical Engineering Research and Design, 2013, 91(12): 2412-2419. |
25 | 杨赫. 介孔含钨材料催化纤维素制备乙二醇及产物的脱水研究[D]. 广州: 华南理工大学, 2019. |
YANG He. Study on the catalytic conversion of cellulose into ethylene glycol by mesoporous tungsten-containing materials and dehydration of the product[D]. Guangzhou: South China University of Technology, 2019. | |
26 | BOWEN Travis C, NOBLE Richard D, FALCONER John L. Fundamentals and applications of pervaporation through zeolite membranes[J]. Journal of Membrane Science, 2004, 245(1/2): 1-33. |
27 | 李敬, 周佳欣, 尤颖, 等. 用于乙醇脱水的亲水性渗透汽化膜材料研究进展[J]. 化工新型材料, 2020, 48(9): 7-11, 15. |
LI Jing, ZHOU Jiaxin, YOU Ying, et al. Research progress of hydrophilic pervaporation membrane material for ethanol dehydration[J]. New Chemical Materials, 2020, 48(9): 7-11, 15. | |
28 | 李良清, 李佳佳, 张进建, 等. 渗透汽化异丙醇脱水ZSM-5沸石膜的制备与表征[J]. 现代化工, 2018, 38(9): 136-141. |
LI Liangqing, LI Jiajia, ZHANG Jinjian, et al. Preparation and characterization of ZSM-5 zeolite membrane for dehydration of isopropanol via pervaporation[J]. Modern Chemical Industry, 2018, 38(9): 136-141. | |
29 | 王聪, 刘秀凤, 崔瑞利, 等. 沸石分子筛膜缺陷的形成及修复[J]. 化学进展, 2008, 20(12): 1860-1867. |
WANG Cong, LIU Xiufeng, CUI Ruili, et al. Formation and reparation of defects in zeolite membranes[J]. Progress in Chemistry, 2008, 20(12): 1860-1867. | |
30 | KWON Yeon Hye, KIANG Christine, BENJAMIN Emily, et al. Krypton-xenon separation properties of SAPO-34 zeolite materials and membranes[J]. AIChE Journal, 2017, 63(2): 761-769. |
31 | WU Jiayu, HUANG Weijie, ZHOU Junjing, et al. Highly selective and permeable SSZ-13 zeolite membranes synthesized by a facile in situ approach for CO2/CH4 separation[J]. Journal of Membrane Science, 2023, 676: 121580. |
32 | ZHAO Jing, ZHANG Yifu, TIAN Fuping, et al. Correction: High pH promoting the synthesis of V-Silicalite-1 with high vanadium content in the framework and its catalytic performance in selective oxidation of styrene[J]. Dalton Transactions, 2018, 47(48): 17525. |
33 | KHATAMIAN M, YAVARI A, AKBARZADEH A, et al. A study on the synthesis of [Fe, B]-MFI zeolites using hydrothermal method and investigation of their properties[J]. Journal of Molecular Liquids, 2017, 242: 979-986. |
34 | 朱美华, 夏水莲, 刘永生, 等. 二次水热合成法制备ZSM-5分子筛膜及其渗透汽化性能[J]. 化工进展, 2016, 35(9): 2885-2891. |
ZHU Meihua, XIA Shuilian, LIU Yongsheng, et al. Secondary hydrothermal synthesis of ZSM-5 zeolite membrane and its pervaporation performance[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2885-2891. | |
35 | SHIRAZIAN Saeed, GHAFARNEJAD PARTO Soheila, ASHRAFIZADEH Seyed Nezameddin. Effect of water content of synthetic hydrogel on dehydration performance of nanoporous LTA zeolite membranes[J]. International Journal of Applied Ceramic Technology, 2014, 11(5): 793-803. |
36 | WANG Xiaodong, DENG Xuan, BAI Zhongxiang, et al. The synthesis of super-hydrophilic and acid-proof Ge-ZSM-5 membranes by simultaneous incorporation of Ge and Al into a Silicalite-1 framework[J]. Journal of Membrane Science, 2014, 468: 202-208. |
37 | VAN DE WATER Leon G A, VAN DER WAAL Jan C, JANSEN Jacobus C, et al. Ge-ZSM-5: The simultaneous incorporation of Ge and Al into ZSM-5 using a parallel synthesis approach[J]. The Journal of Physical Chemistry B, 2003, 107(38): 10423-10430. |
38 | LI Jiang, PAN Yubai, XIANG Changshu, et al. Low temperature synthesis of ultrafine α-Al2O3 powder by a simple aqueous sol-gel process[J]. Ceramics International, 2006, 32(5): 587-591. |
39 | KANEZASHI Masakoto, Jessica O’BRIEN, LIN Y S. Thermal stability improvement of MFI-type zeolite membranes with doped zirconia intermediate layer[J]. Microporous and Mesoporous Materials, 2007, 103(1/2/3): 302-308. |
40 | Banseok OH, KIM Kyunam, KWON YongSung, et al. Pervaporation dehydration of ethylene glycol/water mixture via hydrophilic polymer of intrinsic microporosity (PIM) derivatives[J]. Journal of Membrane Science, 2023, 680: 121707. |
[1] | 陈晓乐, 李娜, 陈霖宇, 周屈兰. ZIFs/PDMDES共混基质膜的制备及其在水溶液中渗透汽化分离乙醇的应用[J]. 化工进展, 2025, 44(1): 407-414. |
[2] | 张浩, 刘世钰, 沈卫华, 方云进. Ca-ZSM-5催化尿素脱水制备单氰胺[J]. 化工进展, 2024, 43(S1): 365-373. |
[3] | 李妍, 吴芹, 陈康成, 张耀远, 史大昕, 黎汉生. 聚酰亚胺渗透汽化膜用于有机溶剂脱水的改性研究进展[J]. 化工进展, 2024, 43(6): 2915-2927. |
[4] | 潘伟亮, 张汛, 李姣妮, 古励, 何强, 敖良根. 次氯酸盐氧化耦合FeCl3絮凝调节改善污泥脱水[J]. 化工进展, 2024, 43(6): 3450-3458. |
[5] | 莎莉, 苏莹嘉, 凌子琛, 于晓艳, 李书鹏, 郭丽莉, 熊静, 房连虎, 张冉, 张书廷. 烟煤掺混对污泥电脱水性能的影响[J]. 化工进展, 2024, 43(4): 2144-2152. |
[6] | 张乐乐, 钱运东, 朱华曈, 冯思龙, 杨秀娜, 于颖, 杨强, 卢浩. 加氢原料煤焦油脱水除盐预处理工艺优化限值[J]. 化工进展, 2023, 42(5): 2298-2305. |
[7] | 常占坤, 张弛, 苏冰琴, 张聪政, 王健, 权晓慧. H2S气态基质对污泥生物沥滤处理效能的影响[J]. 化工进展, 2023, 42(5): 2733-2743. |
[8] | 陈仪, 郭耀励, 叶海星, 李宇璇, 牛青山. 二维纳米材料在渗透汽化脱盐膜中的应用[J]. 化工进展, 2023, 42(3): 1437-1447. |
[9] | 孙千千, 刘阵, 李瑞, 张溪, 杨明德, 吴玉龙. 低温水热耦合亚铁离子活化过硫酸盐提高剩余污泥的脱水性能[J]. 化工进展, 2023, 42(2): 595-602. |
[10] | 张国春, 周志辉, 吴红丹. 基于α-Al2O3载体管的新型MXene膜异丙醇脱水性能[J]. 化工进展, 2023, 42(10): 5381-5389. |
[11] | 郭凡辉, 武建军, 张海军, 郭旸, 刘虎, 张一昕. 煤气化细渣陶瓷膜真空脱水试验与数值模拟[J]. 化工进展, 2022, 41(8): 4047-4056. |
[12] | 肖毅, 王兵兵, 于旭亮, 王鑫, 蔡汉友. 换热壁面碳酸钙吸附与脱水行为的分子动力学[J]. 化工进展, 2022, 41(8): 4077-4085. |
[13] | 韩光鲁, 路宽, 吕杰, 张永辉, 陈墨涵. 二元醇共价交联羧基化石墨烯复合膜和正丁醇脱水性能[J]. 化工进展, 2022, 41(7): 3801-3807. |
[14] | 张春, 王学瑞, 刘华, 高雪超, 张玉亭, 顾学红. 面向工业过程碳减排的分子筛膜技术研究进展[J]. 化工进展, 2022, 41(3): 1376-1390. |
[15] | 马顺选, 宋小三, 王三反, 张轩. 渗透汽化膜的制备及其应用进展[J]. 化工进展, 2021, 40(S2): 256-264. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 1
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 16
|
|
|||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |