化工进展 ›› 2025, Vol. 44 ›› Issue (2): 971-981.DOI: 10.16085/j.issn.1000-6613.2024-0149
收稿日期:
2024-01-19
修回日期:
2024-05-21
出版日期:
2025-02-25
发布日期:
2025-03-10
通讯作者:
赵鹬
作者简介:
赵鹬(1981—),教授,博士生导师,研究方向为多相催化与新材料。E-mail:yzhao@lut.edu.cn。
基金资助:
ZHAO Yu(), SHI Ling, ZHANG Dongqiang, LI Ning
Received:
2024-01-19
Revised:
2024-05-21
Online:
2025-02-25
Published:
2025-03-10
Contact:
ZHAO Yu
摘要:
氟化物移除是全世界范围内急需解决的水处理问题。本文通过一种简单的沉淀-煅烧法合成了氧化镁吸附剂并将其应用于废水除氟研究。pH对合成的氧化镁材料比表面积影响较大,pH在10~10.5时合成的材料比表面积最大(101.1~154.8m2/g)。通过批量吸附实验及等温线研究,发现最大吸附容量为61.337mg/g;该过程符合Freundlich模型,说明吸附过程为非均相吸附;通过动力学研究,发现吸附过程符合拟二级动力学模型,说明吸附过程包含化学吸附。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)等表征结果推断出氧化镁的吸附机理为静电相互作用、离子交换机制。在pH为2~10时氧化镁能有效去除水中的氟化物;常见竞争阴离子中仅有CO32-、PO43-对氟化物的吸附有不利影响;循环吸附实验表明氧化镁吸附剂具有可再生利用的潜力。因此,通过对合成的氧化镁材料进行批次吸附实验及吸附机理的探究,为废水除氟的工业应用提供一定的理论积累。
中图分类号:
赵鹬, 石翎, 张栋强, 李宁. 沉淀法合成氧化镁吸附剂及其对氟化物的吸附机理[J]. 化工进展, 2025, 44(2): 971-981.
ZHAO Yu, SHI Ling, ZHANG Dongqiang, LI Ning. Synthesis of magnesium oxide adsorbent through the precipitation method and its adsorption mechanism for fluoride[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 971-981.
样品 | SBET/m2·g-1 | 总孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
MgO-9.5 | 98.5 | 0.45 | 3.80 |
MgO-10 | 101.1 | 0.39 | 3.83 |
MgO-10.5 | 154.8 | 0.46 | 4.95 |
MgO-11 | 160.9 | 0.52 | 5.69 |
表1 不同pH条件下制备的MgO的结构参数
样品 | SBET/m2·g-1 | 总孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
MgO-9.5 | 98.5 | 0.45 | 3.80 |
MgO-10 | 101.1 | 0.39 | 3.83 |
MgO-10.5 | 154.8 | 0.46 | 4.95 |
MgO-11 | 160.9 | 0.52 | 5.69 |
样品名称 | 吸附容量/mg·g-1 | 去除率/% |
---|---|---|
MgO-9.5 | 7.00 | 70.94 |
MgO-10 | 7.60 | 77.04 |
MgO-10.5 | 6.87 | 69.68 |
MgO-11 | 6.31 | 63.96 |
表2 不同pH条件下制备的MgO对氟化物的吸附性能
样品名称 | 吸附容量/mg·g-1 | 去除率/% |
---|---|---|
MgO-9.5 | 7.00 | 70.94 |
MgO-10 | 7.60 | 77.04 |
MgO-10.5 | 6.87 | 69.68 |
MgO-11 | 6.31 | 63.96 |
模型 | 参数 | 数值 |
---|---|---|
Langmuir吸附等温线 | qm/mg·g-1 | 61.337 |
KL/L·mg-1 | 0.0436 | |
R2 | 0.9294 | |
Freundlich吸附等温线 | KF/mg·g-1 | 6.3553 |
n | 2.0528 | |
R2 | 0.9803 | |
实验值 | qe/mg·g-1 | 47.110 |
表3 MgO-10吸附氟化物的等温线模型参数
模型 | 参数 | 数值 |
---|---|---|
Langmuir吸附等温线 | qm/mg·g-1 | 61.337 |
KL/L·mg-1 | 0.0436 | |
R2 | 0.9294 | |
Freundlich吸附等温线 | KF/mg·g-1 | 6.3553 |
n | 2.0528 | |
R2 | 0.9803 | |
实验值 | qe/mg·g-1 | 47.110 |
样品 | 浓度/g·L-1 | pH | 初始氟离子浓度 /mg·L-1 | 吸附容量 /mg·g-1 |
---|---|---|---|---|
工业MgO | 1 | 7 | 10 | 7.424 |
制备MgO | 1 | 7 | 10 | 7.729 |
表4 工业MgO与制备MgO性能比较
样品 | 浓度/g·L-1 | pH | 初始氟离子浓度 /mg·L-1 | 吸附容量 /mg·g-1 |
---|---|---|---|---|
工业MgO | 1 | 7 | 10 | 7.424 |
制备MgO | 1 | 7 | 10 | 7.729 |
模型 | 参数 | 数值 |
---|---|---|
拟一级动力学模型 | qe/mg·g-1 | 0.409 |
K1/min-1 | 0.0039 | |
R2 | 0.9097 | |
拟二级动力学模型 | qe/mg·g-1 | 9.149 |
K2/g·mg-1·min-1 | 0.104 | |
R2 | 0.9999 | |
颗粒内扩散模型 | Ki1/min0.5 | 0.0571 |
Ci1 | 8.5276 | |
R | 0.8775 | |
Ki2/min0.5 | 0.0127 | |
Ci2 | 8.8729 | |
R | 0.9693 | |
实验值 | qe/mg·g-1 | 9.215 |
表5 拟一级、拟二级和内扩散模型的吸附动力学参数
模型 | 参数 | 数值 |
---|---|---|
拟一级动力学模型 | qe/mg·g-1 | 0.409 |
K1/min-1 | 0.0039 | |
R2 | 0.9097 | |
拟二级动力学模型 | qe/mg·g-1 | 9.149 |
K2/g·mg-1·min-1 | 0.104 | |
R2 | 0.9999 | |
颗粒内扩散模型 | Ki1/min0.5 | 0.0571 |
Ci1 | 8.5276 | |
R | 0.8775 | |
Ki2/min0.5 | 0.0127 | |
Ci2 | 8.8729 | |
R | 0.9693 | |
实验值 | qe/mg·g-1 | 9.215 |
1 | GHOSH Aniruddha, MUKHERJEE Kakali, GHOSH Sumanta K, et al. Sources and toxicity of fluoride in the environment[J]. Research on Chemical Intermediates, 2013, 39(7): 2881-2915. |
2 | KANNO Cynthia M, SANDERS Rebecca L, FLYNN Steven M, et al. Novel apatite-based sorbent for defluoridation: Synthesis and sorption characteristics of nano-micro-crystalline hydroxyapatite-coated-limestone[J]. Environmental Science & Technology, 2014, 48(10): 5798-5807. |
3 | KIM Eun-Ah, PARK Ji Hye, HAN Sung-Hee, et al. Exploratory factor analysis of fluoride removal efficiency associated with the chemical properties of geomaterials[J]. Journal of Hazardous Materials, 2017, 334: 178-184. |
4 | GAN Yonghai, WANG Xiaomeng, ZHANG Li, et al. Coagulation removal of fluoride by zirconium tetrachloride: Performance evaluation and mechanism analysis[J]. Chemosphere, 2019, 218: 860-868. |
5 | YU Chenglong, LIU Lin, WANG Xiaodong, et al. Fluoride removal performance of highly porous activated alumina[J]. Journal of Sol-Gel Science and Technology, 2023, 106: 471-479. |
6 | EKKA Basanti, DHAKA Rajendra S, PATEL Raj Kishore, et al. Fluoride removal in waters using ionic liquid-functionalized alumina as a novel adsorbent[J]. Journal of Cleaner Production, 2017, 151: 303-318. |
7 | HE Junyong, CAI Xingguo, CHEN Kai, et al. Performance of a novelly-defined zirconium metal-organic frameworks adsorption membrane in fluoride removal[J]. Journal of Colloid and Interface Science, 2016, 484: 162-172. |
8 | JADHAV Sachin V, BRINGAS Eugenio, YADAV Ganapati D, et al. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal[J]. Journal of Environmental Management, 2015, 162: 306-325. |
9 | 田追, 张震, 卢嫚, 等. 新型除氟吸附材料的研究进展[J]. 化工进展, 2022, 41(6): 3051-3062. |
TIAN Zhui, ZHANG Zhen, LU Man, et al. New adsorption materials for removing fluoride from wastewater: A review[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3051-3062. | |
10 | KUMAR Eva, BHATNAGAR Amit, KUMAR Umesh, et al. Defluoridation from aqueous solutions by nano-alumina: Characterization and sorption studies[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1042-1049. |
11 | MALIYEKKAL Shihabudheen M, SHUKLA Sanjay, PHILIP Ligy, et al. Enhanced fluoride removal from drinking water by magnesia-amended activated alumina granules[J]. Chemical Engineering Journal, 2008, 140(1/2/3): 183-192. |
12 | HE Yuxuan, ZHANG Liming, AN Xiao, et al. Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: Adsorption isotherms, kinetics, thermodynamics and mechanism[J]. Science of the Total Environment, 2019, 688: 184-198. |
13 | CHANG Qing, ZHU Lihua, LUO Zhihong, et al. Sono-assisted preparation of magnetic magnesium-aluminum layered double hydroxides and their application for removing fluoride[J]. Ultrasonics Sonochemistry, 2011, 18(2): 553-561. |
14 | KAMEDA Tomohito, Jumpei OBA, YOSHIOKA Toshiaki. Recyclable Mg-Al layered double hydroxides for fluoride removal: Kinetic and equilibrium studies[J]. Journal of Hazardous Materials, 2015, 300: 475-482. |
15 | ARAGA Ramya, KALI Suresh, SHARMA Chandra S. Coconut‐shell‐derived carbon/carbon nanotube composite for fluoride adsorption from aqueous solution[J]. CLEAN-Soil Air Water, 2019, 47(5): 1800286. |
16 | MEDELLÍN-CASTILLO Nahum Andres, CRUZ-BRIANO Sergio Armando, Roberto LEYVA-RAMOS, et al. Use of bone char prepared from an invasive species, pleco fish (Pterygoplichthys spp.), to remove fluoride and Cadmium(Ⅱ) in water[J]. Journal of Environmental Management, 2020, 256: 109956. |
17 | AFFONSO Lutiane N, MARQUES Jorge L, LIMA Valéria V C, et al. Removal of fluoride from fertilizer industry effluent using carbon nanotubes stabilized in chitosan sponge[J]. Journal of Hazardous Materials, 2020, 388: 122042. |
18 | SONG Jiangyan, YU Yongyi, HAN Xiaoshuai, et al. Novel MOF(Zr)-on-MOF(Ce) adsorbent for elimination of excess fluoride from aqueous solution[J]. Journal of Hazardous Materials, 2024, 463: 132843. |
19 | JEYASEELAN Antonysamy, ASWIN KUMAR Ilango, VISWANATHAN Natrayasamy, et al. Development and characterization of hydroxyapatite layered lanthanum organic frameworks by template method for defluoridation of water[J]. Journal of Colloid and Interface Science, 2022, 622: 228-238. |
20 | 冯江涛, 王睎, 赵旭阳, 等. 改性聚吡咯材料去除水中氟离子的性能[J]. 化工进展, 2021, 40(7): 4036-4046. |
FENG Jiangtao, WANG Xi, ZHAO Xuyang, et al. Removal of fluoride from water by modified polypyrrole[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 4036-4046. | |
21 | ZHANG Yangzhong, HUANG Kai. Grape pomace as a biosorbent for fluoride removal from groundwater[J]. RSC Advances, 2019, 9(14): 7767-7776. |
22 | JIN Zhen, JIA Yong, ZHANG Kaisheng, et al. Effective removal of fluoride by porous MgO nanoplates and its adsorption mechanism[J]. Journal of Alloys and Compounds, 2016, 675: 292-300. |
23 | 康宁, 由昆, 徐丽, 等. 多孔球状活性氧化镁的制备及除氟效能研究[J]. 工业水处理, 2022, 42(11): 65-75. |
KANG Ning, YOU Kun, XU Li, et al. Research on porous spherical activated MgO preparation and its defluorination efficacy[J]. Industrial Water Treatment, 2022, 42(11): 65-75. | |
24 | LI Lianxiang, XU Di, LI Xiaoqin, et al. Excellent fluoride removal properties of porous hollow MgO microspheres[J]. New Journal of Chemistry, 2014, 38(11): 5445-5452. |
25 | YU Zhichao, XU Chonghe, YUAN Kangkang, et al. Template-free synthesis of MgO mesoporous nanofibers with superior adsorption for fluoride and Congo red[J]. Ceramics International, 2018, 44(8): 9454-9462. |
26 | GUO Wei, LIN Hongfei, ZHU Hongxiang, et al. Preparation and application of magnesium oxide nanoparticles for superiorly fluoride removal[J]. Journal of Alloys and Compounds, 2023, 960: 170935. |
27 | TOLKOU Athanasia K, MANOUSI Natalia, ZACHARIADIS George A, et al. Recently developed adsorbing materials for fluoride removal from water and fluoride analytical determination techniques: A review[J]. Sustainability, 2021, 13(13): 7061-7083. |
28 | SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. |
29 | TANG Dandan, ZHANG Gaoke. Efficient removal of fluoride by hierarchical Ce-Fe bimetal oxides adsorbent: Thermodynamics, kinetics and mechanism[J]. Chemical Engineering Journal, 2016, 283: 721-729. |
30 | PARASHAR Kamya, BALLAV Niladri, DEBNATH Sushanta, et al. Rapid and efficient removal of fluoride ions from aqueous solution using a polypyrrole coated hydrous tin oxide nanocomposite[J]. Journal of Colloid and Interface Science, 2016, 476: 103-118. |
31 | WANG Kaixiang, WEI Tingting, LI Yinuo, et al. Flocculation-to-adsorption transition of novel salt-responsive polyelectrolyte for recycling of highly polluted saline textile effluents[J]. Chemical Engineering Journal, 2021, 413: 127410. |
32 | ZHU Kecheng, DUAN Yanyan, WANG Fu, et al. Silane-modified halloysite/Fe3O4 nanocomposites: Simultaneous removal of Cr(Ⅵ) and Sb(Ⅴ) and positive effects of Cr(Ⅵ) on Sb(Ⅴ) adsorption[J]. Chemical Engineering Journal, 2017, 311: 236-246. |
33 | ZHANG Mengxue, XU Liheng, QI Changli, et al. Highly effective removal of Tetracycline from water by hierarchical porous carbon: Batch and column adsorption[J]. Industrial & Engineering Chemistry Research, 2019, 58(43): 20036-20046. |
34 | TANG Yulin, GUAN Xiaohong, WANG Jianmin, et al. Fluoride adsorption onto granular ferric hydroxide: Effects of ionic strength, pH, surface loading, and major co-existing anions[J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 774-779. |
35 | MOHAPATRA M, ROUT K, SINGH P, et al. Fluoride adsorption studies on mixed-phase nano iron oxides prepared by surfactant mediation-precipitation technique[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1751-1757. |
36 | LANGMUIR Irving. The constitution and fundamental properties of solids and liquids. Part Ⅰ. Solids[J]. Journal of the American Chemical Society, 1916, 38(11): 2221-2295. |
37 | YIN Chun, HUANG Qilan, ZHU Guiping, et al. High-performance lanthanum-based metal-organic framework with ligand tuning of the microstructures for removal of fluoride from water[J]. Journal of Colloid and Interface Science, 2022, 607: 1762-1775. |
38 | GOGOI Sweety, DUTTA Robin K. Mechanism of fluoride removal by phosphoric acid-enhanced limestone: Equilibrium and kinetics of fluoride sorption[J]. Desalination and Water Treatment, 2016, 57(15): 6838-6851. |
39 | SAHU Sumanta, MALLIK Laxmi, PAHI Souman, et al. Facile synthesis of poly o-toluidine modified lanthanum phosphate nanocomposite as a superior adsorbent for selective fluoride removal: A mechanistic and kinetic study[J]. Chemosphere, 2020, 252: 126551. |
40 | GAO Panpan, TIAN Xike, YANG Chao, et al. Fabrication, performance and mechanism of MgO meso-/macroporous nanostructures for simultaneous removal of As(Ⅲ) and F in a groundwater system[J]. Environmental Science: Nano, 2016, 3(6): 1416-1424. |
41 | ZHANG Kaisheng, WU Shibiao, WANG Xuelong, et al. Wide pH range for fluoride removal from water by MHS-MgO/MgCO3 adsorbent: Kinetic, thermodynamic and mechanism studies[J]. Journal of Colloid and Interface Science, 2015, 446: 194-202. |
42 | NIU Haixia, YANG Qing, TANG Kaibin, et al. Large-scale synthesis of single-crystalline MgO with bone-like nanostructures[J]. Journal of Nanoparticle Research, 2006, 8(6): 881-888. |
43 | JIN Zhen, JIA Yong, LUO Tao, et al. Efficient removal of fluoride by hierarchical MgO microspheres: Performance and mechanism study[J]. Applied Surface Science, 2015, 357: 1080-1088. |
44 | XU Rong. ZENG Huachun. Dimensional control of cobalt-hydroxide-carbonate nanorods and their thermal conversion to one-dimensional arrays of Co3O4 nanoparticles[J]. Journal of Physical Chemistry B, 2003, 107(46): 12643-12649. |
45 | SUGAMA T, SABATINI R, PETRAKIS L. Decomposition of chrysotile asbestos by fluorosulfonic acid[J]. Industrial & Engineering Chemistry Research, 1998, 37(1): 79-88. |
46 | WANG Lanting, XIE Yanhua, YANG Jinglong, et al. Insight into mechanisms of fluoride removal from contaminated groundwater using lanthanum-modified bone waste[J]. RSC Advances, 2017, 7(85): 54291-54305. |
47 | WUTTKE Stefan, COMAN Simona M, SCHOLZ Gudrun, et al. Novel Sol-gel synthesis of acidic MgF2- x (OH) x materials[J]. Chemistry:A European Journal, 2008, 14(36): 11488-11499. |
48 | MAO Chunfeng, YIN Kai, YANG Chenghan, et al. Fe-based MOFs@Pd@COFs with spatial confinement effect and electron transfer synergy of highly dispersed Pd nanoparticles for Suzuki-Miyaura coupling reaction[J]. Journal of Colloid and Interface Science, 2022, 608: 809-819. |
[1] | 白依冉, 翟玉玲, 戴晶慧, 李舟航. 微纳尺度池沸腾表面润湿性的气泡成核及强化传热机制[J]. 化工进展, 2025, 44(2): 743-751. |
[2] | 李琢宇, 余美琪, 陈孝彦, 胡若晖, 王庆宏, 陈春茂, 詹亚力. 炼油废催化剂吸附去除水中硝基苯的特性与机制[J]. 化工进展, 2025, 44(2): 1076-1087. |
[3] | 张琪, 王涛, 张雪冰, 李为真, 冯波, 蒋智慧, 吕毅军, 门卓武. 合成气制高级醇Co基催化剂研究进展[J]. 化工进展, 2025, 44(2): 773-787. |
[4] | 张爱京, 王桢钰, 肖宁宁, 宋艳娜, 李军, 冯江涛, 延卫. 新型汞离子吸附材料研究进展[J]. 化工进展, 2025, 44(2): 899-913. |
[5] | 张强, 孙楠, 郑俊杰, 吴强, 刘传海, 李元吉. 混合热力学促进剂对水合物法分离回收瓦斯的影响[J]. 化工进展, 2025, 44(1): 192-201. |
[6] | 杨润农, 白帆飞, 林梓荣, 孙永明, 尹祥. 分子筛吸附脱除有机硫的研究进展[J]. 化工进展, 2025, 44(1): 329-340. |
[7] | 倪鹏, 王先泓, 黄钰涵, 马晓彤, 马子轸, 谈琰, 张华伟, 刘亭. 活性炭类和磁性金属类吸附剂喷射脱汞技术应用对比及最新进展[J]. 化工进展, 2025, 44(1): 513-524. |
[8] | 刘新维, 高珊, 王红涛, 王建成. 气化细渣、铝灰的活化及其吸附性能[J]. 化工进展, 2025, 44(1): 558-571. |
[9] | 赵丽阳, 李倩, 何佩熹, 潘鸿辉, 刘艳, 刘细祥. 磷钼酸-Fe3O4球磨共改性污泥基生物炭对四环素的吸附特性[J]. 化工进展, 2025, 44(1): 583-595. |
[10] | 张炜, 黄赳, 朱晓芳, 李鹏. 凹凸棒石基钴钨水滑石吸附铅的性能及机理[J]. 化工进展, 2025, 44(1): 596-606. |
[11] | 李琳, 黄国勇, 徐盛明, 郁丰善, 翁雅青, 曹才放, 温嘉玮, 王春霞, 王俊莲, 顾斌涛, 张袁华, 刘斌, 王才平, 潘剑明, 徐泽良, 王翀, 王珂. 铝基废催化剂载体的回收与再生制备[J]. 化工进展, 2024, 43(S1): 640-649. |
[12] | 石磊, 王倩, 赵晓胜, 刘宏臣, 车远军, 段玉, 李庆. 油页岩灰基分子筛的制备及对亚甲基蓝的吸附[J]. 化工进展, 2024, 43(S1): 650-661. |
[13] | 李依梦, 陈运全, 何畅, 张冰剑, 陈清林. 基于物理信息神经网络的甲烷无氧芳构化反应的正反问题[J]. 化工进展, 2024, 43(9): 4817-4823. |
[14] | 申纯宇, 李翠利, 汤建伟, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 纳米氢氧化镁制备及其阻燃应用进展[J]. 化工进展, 2024, 43(9): 4980-4995. |
[15] | 刘丽, 冯博, 文洋, 古启雄. 硅基介孔材料的合成、功能化及对金属的吸附研究进展[J]. 化工进展, 2024, 43(9): 5063-5078. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 18
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 49
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |