1 |
PÄÄKKÖNEN T M, RIIHIMÄKI M, SIMONSON C J, et al. Crystallization fouling of CaCO3-analysis of experimental thermal resistance and its uncertainty[J]. International Journal of Heat & Mass Transfer, 2012, 55(23-24): 6927-6937.
|
2 |
CHAUSSEMIER M, POURMOHTASHAM E, GELUS D, et al. State of art of natural inhibitors of calcium carbonate scaling[J]. Desalination, 2015, 356: 47-55.
|
3 |
贺姗姗. 圆管内三角翼涡流发生器CaCO3污垢特性的数值模拟[D]. 吉林: 东北电力大学, 2018.
|
|
HE S S. Numerical simulation of CaCO3 fouling characteristics in tube with delta wing vortex generator[D]. Jilin: Northeast Electric Power University, 2018.
|
4 |
罗志强, 杨庆峰. 旋转磁场与水量耦合对CaCO3结晶的影响[J]. 化工学报, 2018, 69(7): 3029-3037.
|
|
LUO Z Q, YANG Q F. Effect of rotating magnetic field coupled with water volume on CaCO3 crystallization[J]. CIESC Journal, 2018, 69(7): 3029-3037.
|
5 |
WANG J G, LIANG Y D. Anti-fouling effect of axial alternating electromagnetic field on calcium carbonate fouling in U-shaped circulating cooling water heat exchange tube[J]. International Journal of Heat & Mass Transfer, 2017, 115: 774-781.
|
6 |
李海花, 刘振法, 高玉华, 等. 静电场对CaCO3结晶过程的影响及与绿色阻垢剂的协同阻垢性能[J]. 化工学报, 2013, 64(5): 1736-1742.
|
|
LI H H, LIU Z F, GAO Y H, et al. Influence of electrostatic water treatment on crystallization behavior of CaCO3 and synergistic scale inhibition with a green scale inhibitor[J]. CIESC Journal, 2013, 64(5): 1736-1742.
|
7 |
ALIMI F, TLILI M, AMOR M B, et al. Influence of magnetic field on calcium carbonate precipitation[J]. Desalination, 2007, 206(1/2/3): 163-168.
|
8 |
TIJING L D, LEE D H, KIM D W, et al. Effect of high-frequency electric fields on calcium carbonate scaling[J]. Desalination, 2011, 279(1/2/3): 47-53.
|
9 |
徐志明, 常宏亮, 王兵兵, 等. 电场作用下CaCO3污垢特性的实验研究[J]. 中国电机工程学报, 2018, 38(21): 6346-6352.
|
|
XU Z M, CHANG H L, WANG B B, et al. Experimental study on CaCO3 fouling characteristics under electric field[J]. Proceedings of the CSEE, 2018, 38(21): 6346-6352.
|
10 |
SMEETS P, KANG R C, KEMPEN R, et al. Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy[J]. Nature Materials, 2015, 14(4): 394-399.
|
11 |
GEBAUER D, CÖLFEN H. Prenucleation clusters and non-classical nucleation[J]. Nano Today, 2011, 6(6): 564-584.
|
12 |
GEBAUER D, VÖLKEL A, CÖLFEN H. Stable prenucleation calcium carbonate clusters[J]. Science, 2008, 322(5909): 1819-1822.
|
13 |
POUGET E M, BOMANS P H H, GOOS J A C M, et al. The initial stages of template-controlled CaCO3 formation revealed by Cryo-TEM[J]. Science, 2009, 323(5920): 1455-1458.
|
14 |
GOODWIN A L, MICHEL F M, PHILLIPS B L, et al. Nanoporous structure and medium-range order in synthetic amorphous calcium carbonate[J]. Chemistry of Materials, 2010, 22(10): 3197-3205.
|
15 |
RAITERI P, GALE J D. Water is the key to nonclassical nucleation of amorphous calcium carbonate[J]. Journal of the American Chemical Society, 2010, 132(49): 17623–17634.
|
16 |
RODRIGUEZ-BLANCO J D, SHAW S, BENNING L G. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite[J]. Nanoscale, 2010, 3(1): 265-271.
|
17 |
NIELSEN M H, ALONI S, YOREO J J D. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways[J]. Science, 2014, 345(6201): 1158-1162.
|
18 |
SAHARAY M, YAZAYDIN A O, KIRKPATRICK R J. Dehydration-induced amorphous phases of calcium carbonate[J]. Journal of Physical Chemistry B, 2013, 117(12): 3328-3336.
|
19 |
SAHARAY M, KIRKPATRICK R J. Water dynamics in hydrated amorphous materials: a molecular dynamics study of the effects of dehydration in amorphous calcium carbonate[J]. Physical Chemistry Chemical Physics, 2017, 19(43): 29594-29600.
|
20 |
PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.
|
21 |
MA M, WANG Y H, CAO X F, et al. Temperature and supersaturation as key parameters controlling the spontaneous precipitation of calcium carbonate with distinct physicochemical properties from pure aqueous solutions[J]. Crystal Growth and Design, 2019, 19(12): 6972-6988.
|
22 |
WU Y J, TEPPER H L, VOTH G A. Flexible simple point-charge water model with improved liquid-state properties[J]. The Journal of Chemical Physics, 2006, 124(2): 24503-24503.
|
23 |
DEMICHELIS R, RAITERI P, GALE J D, et al. Stable prenucleation mineral clusters are liquid-like ionic polymers[J]. Nature Communications, 2011, 2(6): 590.
|
24 |
XIAO S J, EDWARDS S A, GRÄTER F. A new transferable forcefield for simulating the mechanics of CaCO3 crystals[J]. Journal of Physical Chemistry C, 2011, 115(41): 20067-20075.
|
25 |
SWOPE W C, ANDERSEN H C, BERENS P H, et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters[J]. Journal of Chemical Physics, 1982, 76(1): 637-649.
|
26 |
BECKERS J V L, LOWE C P, LEEUW S W D. An iterative PPPM method for simulating coulombic systems on distributed memory parallel computers[J]. Molecular Simulation, 1998, 20(6): 369-383.
|
27 |
GEBAUER D, GUNAWIDJAJA P N, KO J Y P. Proto-calcite and proto-vaterite in amorphous calcium carbonates[J]. Angewandte Chemie International Edition, 2010, 49(47): 8889-8891.
|
28 |
SURFACEACE A F, HEDGES L O, FERNANDEZ-MARTINEZ A, et al. Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions[J]. Science, 2013, 341(6148): 885-889.
|
29 |
LHLI J, WONG W C, NOEL E H, et al. Dehydration and crystallization of amorphous calcium carbonate in solution and in air[J]. Nature Communications, 2014, 5(1): 3169.
|
30 |
ZOU Z Y, BERTINETTI L, POLITI Y, et al. Opposite particle size effect on amorphous calcium carbonate crystallization in water and during heating in air[J]. Chemistry of Materials, 2015, 27(12): 4237-4246.
|