化工进展 ›› 2024, Vol. 43 ›› Issue (11): 6493-6503.DOI: 10.16085/j.issn.1000-6613.2023-1794
• 资源与环境化工 • 上一篇
收稿日期:
2023-10-12
修回日期:
2023-11-17
出版日期:
2024-11-15
发布日期:
2024-12-07
通讯作者:
张连科
作者简介:
孙鹏(1980—),男,博士,讲师,研究方向为炭材料修复水体和土壤污染。E-mail:sp_five666@163.com。
基金资助:
SUN Peng(), JIN Zihan, ZHANG Lianke()
Received:
2023-10-12
Revised:
2023-11-17
Online:
2024-11-15
Published:
2024-12-07
Contact:
ZHANG Lianke
摘要:
以农业废弃物向日葵秸秆为原料,采用慢速热解法制备了向日葵秸秆基炭材料(BC),通过比表面积分析仪(BET)、扫描电镜(SEM)、X射线衍射仪(XRD)和X射线光电子能谱仪(XPS)等手段对BC进行表征,并研究其活化过一硫酸盐(PMS)降解土壤中苯胺(AN)的性能,探究了pH、BC投加量、PMS浓度、有机质和共存阴离子对AN降解的影响,并考察了BC的重复利用性能。结果表明,BC可高效活化PMS降解土壤中AN,在BC=0.1g/L、PMS=0.5mmol/L、AN=10mg/kg和pH=7的条件下,30min内BC/PMS体系对AN的降解率可达100%。自由基猝灭实验与电子顺磁共振(EPR)测试结果表明,BC/PMS体系为非自由基反应,1O2为该体系的活性物种。机制分析阐明C
中图分类号:
孙鹏, 金子涵, 张连科. 向日葵秸秆基炭材料活化过一硫酸盐降解土壤中苯胺[J]. 化工进展, 2024, 43(11): 6493-6503.
SUN Peng, JIN Zihan, ZHANG Lianke. Aniline degradation in soil by activation of persulfate with sunflower straw-based carbon material[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6493-6503.
样品 | 产率/% | SA/m2·g-1 | Smic/m2·g-1 | Vtot/m3·g-1 | Vmic/m3·g-1 | Vmeso/m3·g-1 |
---|---|---|---|---|---|---|
BC700 | 27.4 | 349 | 324 | 0.181 | 0.163 | 0.018 |
BC800 | 22.6 | 766 | 711 | 0.434 | 0.356 | 0.078 |
BC900 | 18.4 | 872 | 772 | 0.508 | 0.390 | 0.118 |
BC1000 | 15.6 | 249 | 188 | 0.140 | 0.097 | 0.043 |
表1 不同热解温度下制备的炭材料产率、比表面积和孔径
样品 | 产率/% | SA/m2·g-1 | Smic/m2·g-1 | Vtot/m3·g-1 | Vmic/m3·g-1 | Vmeso/m3·g-1 |
---|---|---|---|---|---|---|
BC700 | 27.4 | 349 | 324 | 0.181 | 0.163 | 0.018 |
BC800 | 22.6 | 766 | 711 | 0.434 | 0.356 | 0.078 |
BC900 | 18.4 | 872 | 772 | 0.508 | 0.390 | 0.118 |
BC1000 | 15.6 | 249 | 188 | 0.140 | 0.097 | 0.043 |
图12 糠醇和NaN3对BC900/PMS体系中苯胺降解的影响以及PMS体系和BC900/PMS体系中TEMP-1O2的EPR光谱[AN] = (10±0.5)mg/kg, pH = 7, [PMS] = 0.5mmol/L, [BC900] = 0.1g/L, [TEMP] = 20mmol/L, T = 25℃
1 | 环境保护部和国土资源部发布全国土壤污染状况调查公报[J]. 油田气环境保护, 2014, 24(3): 66. |
Ministry of Environmental Protection (MEP) and Ministry of Land and Resources (MLR) released the National Soil Pollution Survey Bulletin[J]. Environmental Protection of Oil & Gas Fields, 2014, 24(3): 66. | |
2 | 翟亚男. 土壤有机污染治理研究[J]. 资源节约与环保,2020(11): 95-96. |
ZHAI Yanan. Study on treatment of soil organic pollution[J]. Resources Economization & Environmental Protection, 2020 (11): 95-96. | |
3 | 刘国强, 顾轩竹, 胡哲伟, 等. 农业土壤有机污染生物修复技术研究进展[J]. 江苏农业科学, 2022, 50(1): 27-33. |
LIU Guoqiang, GU Xuanzhu, HU Zhewei, et al. Research progress on bioremediation technology of organic pollution in agricultural soil[J]. Jiangsu Agricultural Science, 2022, 50(1): 27-33. | |
4 | SUN Lulu, LIN Chaoba, ZHOU Zengxing, et al. Characteristics of organic pollutants and their effects on the microbial composition and activity in the industrial soils of Pearl River Delta, China[J]. Ecotoxicology and Environmental Safety, 2023, 256: 114844. |
5 | LV Yayue, WU Sifan, LIAO Junbin, et al. An integrated adsorption- and membrane-based system for high-salinity aniline wastewater treatment with zero liquid discharge[J]. Desalination, 2022, 527: 115537. |
6 | 杨振兴, 郭绍辉. 苯胺废水处理技术综述[J]. 油气田环境保护, 2022, 32(4): 1-6. |
YANG Zhenxing, GUO Shaohui. Review of aniline wastewater treatment technology[J]. Environmental Protection of Oil & Gas Fields, 2022,32(4): 1-6. | |
7 | 张华, 张子鹏, 张澜澜, 等. H2O2强化光催化处理苯胺化工废水的应用试验[J]. 化工进展, 2020, 39(12): 5299-5308. |
ZHANG Hua, ZHANG Zipeng, ZHANG Lanlan, et al. In situ test of aniline wastewater degradation by photocatalytic treatment combined with H2O2 [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5299-5308. | |
8 | 徐天缘, 郑茜, 王连娟, 等. 焦粉高效活化过硫酸盐对苯胺的降解性能[J]. 化工进展, 2022, 41(6): 3314-3323. |
XU Tianyuan, ZHENG Xi, WANG Lianjuan, et al. Persulfate activation by coke powder for aniline degradation[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3314-3323. | |
9 | LUO Jiayi, YI Yunqiang, FANG Zhanqiang. Nitrogen-rich magnetic biochar prepared by urea was used as an efficient catalyst to activate persulfate to degrade organic pollutants[J]. Chemosphere, 2023, 339: 139614. |
10 | FAN Yan, JI Yuefei, KONG Deyang, et al. Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process[J]. Journal of Hazardous Materials, 2015, 300: 39-47. |
11 | DOMINGUEZ Carmen M, RODRIGUEZ Vanesa, MONTERO Esperanza, et al. Methanol-enhanced degradation of carbon tetrachloride by alkaline activation of persulfate: Kinetic model[J]. Science of the Total Environment, 2019, 666: 631-640. |
12 | HU Peidong, LONG Mingce. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications[J]. Applied Catalysis B: Environmental, 2016, 181: 103-117. |
13 | 李旭光, 郭彦秀, 王婷婷, 等. 玉米秸秆生物炭活化过硫酸盐催化降解罗丹明B的性能研究[J]. 水处理技术, 2022, 48(4): 46-49, 53. |
LI Xuguang, GUO Yanxiu, WANG Tingting, et al. The catalytic performance of persulfate for aqueous rhodamine B activated by corn stalk biochar[J]. Technology of Water Treatment, 2022, 48(4): 46-49, 53. | |
14 | 孙鹏, 柳佳鹏, 王维大, 等. 活性炭强化热活化过硫酸盐降解对硝基苯酚[J]. 中国环境科学, 2020, 40(11): 4779-4785. |
SUN Peng, LIU jiapeng, WANG Weida, et al. Active carbon enhanced thermal activation of persulfate for degradation of p-nitrophenol[J]. China Environmental Science, 2020, 40(11): 4779-4785. | |
15 | LEE Yuchi, Shang-Lien LO, KUO Jeff, et al. Persulfate oxidation of perfluorooctanoic acid under the temperatures of 20—40℃[J]. Chemical Engineering Journal, 2012, 198/199: 27-32. |
16 | 王宇航, 邓德明. 氮掺杂生物炭活化过硫酸盐去除罗丹明B[J]. 武汉大学学报(理学版), 2022, 68(2): 137-145. |
WANG Yuhang, DENG Deming. Removal of rhodamine B by persulfate activated with N-doped biochar[J]. Journal of Wuhan University (Natural Science Edition), 2022, 68(2): 137-145. | |
17 | 肖鹏飞, 安璐, 韩爽. 炭质材料在活化过硫酸盐高级氧化技术中的应用进展[J]. 化工进展, 2020, 39(8): 3293-3306. |
XIAO Pengfei, AN Lu, HAN Shuang. Research advances on applying carbon materials to activate persulfate in advanced oxidation technology[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3293-3306. | |
18 | 王宇航, 邓德明. 改性生物炭活化过硫酸盐去除罗丹明B[J]. 水处理技术, 2022, 48(6): 85-89. |
WANG Yuhang, DENG Deming. Removal of rhodamine B by activated persulfate with modified biochar[J]. Technology of Water Treatment, 2022, 48(6): 85-89. | |
19 | ZHOU Xuerong, ZENG Zhuotong, ZENG Guangming, et al. Persulfate activation by swine bone char-derived hierarchical porous carbon: Multiple mechanism system for organic pollutant degradation in aqueous media[J]. Chemical Engineering Journal, 2020, 383: 123019. |
20 | 孙鹏, 张凯凯, 张玉, 等. 生物炭/过一硫酸盐体系同时去除Cu2+和对硝基苯胺[J]. 化工进展, 2020, 39(10): 4268-4274. |
SUN Peng, ZHANG Kaikai, ZHANG Yu, et al. Simultaneous removal of Cu2+ and p-nitroaniline from aqueous solution by biochar/peroxymonosulfate system[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4268-4274. | |
21 | AVRAMIOTIS Efstathios, FRONTISTIS Zacharias, MANARIOTIS Ioannis D, et al. Oxidation of sulfamethoxazole by rice husk biochar-activated persulfate[J]. Catalysts, 2021, 11(7): 850. |
22 | GIANNAKIS Stefanos, LIN Kun-Yi Andrew, GHANBARI Farshid. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs)[J]. Chemical Engineering Journal, 2021, 406: 127083. |
23 | SHAKYA Amita, VITHANAGE Meththika, AGARWAL Tripti. Influence of pyrolysis temperature on biochar properties and Cr(Ⅵ) adsorption from water with groundnut shell biochars: Mechanistic approach[J]. Environmental Research, 2022, 215: 114243. |
24 | LU Fangjie, WANG Qinqin, ZHU Mingyuan, et al. Deactivation and regeneration of nitrogen doped carbon catalyst for acetylene hydrochlorination[J]. Molecules, 2023, 28(3): 956. |
25 | Didem ÖZÇIMEN, Ayşegül ERSOY-MERIÇBOYU. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials[J]. Renewable Energy, 2010, 35(6): 1319-1324. |
26 | 孙浩, 陈晨, 刘兆煐, 等. 氮改性生物炭活化过一硫酸盐降解水体中2,4-二氯酚的机制研究[J]. 世界地质, 2022, 41(2): 420-427. |
SUN Hao, CHEN Chen, LIU Zhaoying, et al. Degradation mechanism of 2,4-dichlorophenol in water by activated peroxomonosulfate from nitrogen-modified biochar[J]. World Geology, 2022, 41(2): 420-427. | |
27 | YU Bocji, MAN Yanli, WANG Pingping, et al. Catalytic degradation of dimethomorph by nitrogen-doped rice husk biochar[J]. Ecotoxicology and Environmental Safety, 2023, 257: 114908. |
28 | INYANG Mandu, GAO Bin, PULLAMMANAPPALLIL Pratap, et al. Biochar from anaerobically digested sugarcane bagasse[J]. Bioresource Technology, 2010, 101(22): 8868-8872. |
29 | GOLSHAN Masoumeh, KAKAVANDI Babak, AHMADI Mehdi, et al. Photocatalytic activation of peroxymonosulfate by TiO2 anchored on cupper ferrite (TiO2@CuFe2O4) into 2,4-D degradation: Process feasibility, mechanism and pathway[J]. Journal of Hazardous Materials, 2018, 359: 325-337. |
30 | 相里鹏, 崔佳丽, 张峰, 等. 磁性生物炭活化过硫酸盐去除水中罗丹明B[J]. 中国环境科学, 2023, 43(4): 1672-1687. |
XIANG Lipeng, CUI Jiali, ZHANG Feng, et al. Removal of Rhodamine B from aqueous solutions by magnetic biochar activated persulfate[J]. China Environmental Science, 2023, 43(4): 1672-1687. | |
31 | OYEKUNLE Daniel T, ZHOU Xinquan, SHAHZAD Ajmal, et al. Review on carbonaceous materials as persulfate activators: Structure-performance relationship, mechanism and future perspectives on water treatment[J]. Journal of Materials Chemistry A, 2021, 9(13): 8012-8050. |
32 | HUANG, Baocheng, JIANG Jun, HUANG Guixiang, et al. Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate[J]. Journal of Materials Chemistry A, 2018, 6(19): 8978-8985. |
33 | 王磊, 黄帅, 路长远, 等. 氮掺杂生物炭(N/BC)活化过硫酸盐机理研究[J]. 化学研究, 2023, 34(5): 455-462. |
WANG Lei, HUANG Shuai, LU Changyuan, et al. Study on mechanism of N-doped biocarbon (N/BC) toward activating persulfate[J]. Chemical Research, 2023, 34(5): 455-462. | |
34 | ZOU Yubin, LI Wentao, YANG Lian, et al. Activation of peroxymonosulfate by sp2-hybridized microalgae-derived carbon for ciprofloxacin degradation: Importance of pyrolysis temperature[J]. Chemical Engineering Journal, 2019, 370: 1286-1297. |
35 | SHAO Penghui, TIAN Jiayu, YANG Feng, et al. Identification and regulation of active sites on nanodiamonds: Establishing a highly efficient catalytic system for oxidation of organic contaminants[J]. Advanced Functional Materials, 2018, 28(13): 1705295. |
[1] | 何弈雪, 秦先超, 马伟芳. 过硫酸盐高级氧化原位修复地下水中卤代烃污染研究进展[J]. 化工进展, 2024, 43(7): 4072-4088. |
[2] | 李亚男, 郭凯, 王嘉琪, 武亚宁. 煤气化渣活化过二硫酸盐和过一硫酸盐降解苯酚的比较[J]. 化工进展, 2024, 43(6): 3503-3512. |
[3] | 宗世荣, 王玲, 姚秋月, 延卫. 炭材料在储钠器件负极中的研究进展[J]. 化工进展, 2024, 43(10): 5581-5600. |
[4] | 马超, 孙志华, 王蕾, 姬钰, 陈翠忠, 王健康, 赵纯. 电/高锰酸钾/过一硫酸盐体系降解活性黄K-RN及其机理[J]. 化工进展, 2024, 43(10): 5958-5968. |
[5] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[6] | 吴锋振, 刘志炜, 谢文杰, 游雅婷, 赖柔琼, 陈燕丹, 林冠烽, 卢贝丽. 生物质基铁/氮共掺杂多孔炭的制备及其活化过一硫酸盐催化降解罗丹明B[J]. 化工进展, 2023, 42(6): 3292-3301. |
[7] | 任建鹏, 吴彩文, 刘慧君, 吴文娟. 木质素-聚苯胺复合材料的制备及对刚果红的吸附[J]. 化工进展, 2023, 42(6): 3087-3096. |
[8] | 王雪, 徐期勇, 张超. 木质纤维素类生物质水热炭化机理及水热炭应用进展[J]. 化工进展, 2023, 42(5): 2536-2545. |
[9] | 薛博, 杨婷婷, 王雪峰. 聚苯胺/碳纳米管气敏材料的研究进展[J]. 化工进展, 2023, 42(3): 1448-1456. |
[10] | 祁元, 徐欣蓉, 阮玮, 吴昊, 吴科, 周亚明, 杨宏旻. 改性活性碳纤维对苯胺吸附特性分析[J]. 化工进展, 2022, 41(S1): 622-630. |
[11] | 潘杰, 王明新, 高生旺, 夏训峰, 韩雪. 氮硫掺杂生物炭/过一硫酸盐体系降解水中磺胺异唑[J]. 化工进展, 2022, 41(8): 4204-4212. |
[12] | 何畅帆, 赵小航, 章雪莹, 何林, 隋红, 李鑫钢. 过一硫酸盐-高铁酸盐-FeS体系土柱淋洗修复邻二氯苯污染土壤[J]. 化工进展, 2022, 41(5): 2743-2752. |
[13] | 熊哲, 邓伟, 刘佳, 汪雪棚, 徐俊, 江龙, 苏胜, 汪一, 胡松, 向军. 生物油非催化热转化过程中受热结焦特性研究进展[J]. 化工进展, 2022, 41(4): 1802-1813. |
[14] | 许泽涛, 曹怡婷, 王俏, 王志红. 固相钴基催化剂活化过一硫酸盐在水处理中的研究进展[J]. 化工进展, 2022, 41(2): 730-739. |
[15] | 吕朋, 何畅帆, 何林, 李鑫钢, 隋红. 含重质油污泥非均相氧化降解特性及其强化机制[J]. 化工进展, 2022, 41(11): 6149-6157. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |