1 |
TANG Heng, TANG Yong, WAN Zhenping, et al. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling[J]. Applied Energy, 2018, 223: 383-400.
|
2 |
JOSEPH Pierre, TABELING Patrick. Direct measurement of the apparent slip length[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 71(3): 035303.
|
3 |
TOGHRAIE Davood, HEKMATIFAR Maboud, SALEHIPOUR Yasaman, et al. Molecular dynamics simulation of Couette and Poiseuille water-copper nanofluid flows in rough and smooth nanochannels with different roughness configurations[J]. Chemical Physics, 2019, 527: 110505.
|
4 |
BITSANIS Ioannis, MAGDA Jules J, TIRRELL Matthew, et al. Molecular dynamics of flow in micropores[J]. The Journal of Chemical Physics, 1987, 87(3): 1733-1750.
|
5 |
GHOLAMREZA Ahmadi, Jahangiri ALI, MOHAMMAD Ameri. The effects of transferred heat and wall material on thermal behavior of a nano-grooved micro-heat pipe, molecular dynamics simulation[J]. Engineering Analysis with Boundary Elements, 2024, 160: 1-13.
|
6 |
PIT R, HERVET H, LEGER L. Direct experimental evidence of slip in hexadecane: Solid interfaces[J]. Physical Review Letters, 2000, 85(5): 980-983.
|
7 |
CAO Bingyang, CHEN Min, GUO Zengyuan. Effect of surface roughness on gas flow in microchannels by molecular dynamics simulation[J]. International Journal of Engineering Science, 2006, 44(13/14): 927-937.
|
8 |
JING Dalei, BHUSHAN Bharat. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: A review[J]. Journal of Colloid and Interface Science, 2015, 454: 152-179.
|
9 |
JUNG Jung-Yeul, KWAK Ho-Young. Effect of surface condition on boiling heat transfer from silicon chip with submicron-scale roughness[J]. International Journal of Heat and Mass Transfer, 2006, 49(23/24): 4543-4551.
|
10 |
SONG Zhao, SHANG Xueshuo. Investigation of surface structure-wettability coupling on heat transfer and flow characteristics in nanochannels[J]. Applied Thermal Engineering, 2023, 218: 119362.
|
11 |
THOMPSON Peter A, ROBBINS Mark O. Shear flow near solids: Epitaxial order and flow boundary conditions[J]. Physical Review A, 1990, 41(12): 6830-6837.
|
12 |
SONG Zhao, CUI Zheng, CAO Qun, LIU Yu, LI Junhui. Molecular dynamics study of convective heat transfer in ordered rough nanochannels[J]. Journal of Molecular Liquids, 2021, 337: 116052.
|
13 |
徐超, 何雅玲, 王勇. 纳米通道滑移流动的分子动力学模拟研究[J]. 工程热物理学报, 2005, 26(6): 912-914.
|
|
XU Chao, HE Yaling, WANG Yong. Molecular dynamics studies of velocity slip phenomena in a nanochannel[J]. Journal of Engineering Thermophysics, 2005, 26(6): 912-914.
|
14 |
刘洁, 刘万强, 孙林萍, 等. 温度对有机物传热影响的分子动力学模拟及微观机理研究[J]. 原子与分子物理学报, 2023, 40(3): 69-78.
|
|
LIU Jie, LIU Wanqiang, SUN Linping, et al. Molecular dynamics simulation and microscopic mechanism study on the effect of temperature on heat conduction of liquid organic[J]. Journal of Atomic and Molecular Physics, 2023, 40(3): 69-78.
|
15 |
陈洁敏. 微纳尺度气体流动速度滑移的分子动力学研究[D]. 杭州: 中国计量大学, 2018.
|
|
CHEN Jiemin. Molecular dynamics study on the velocity slip of micro/nano scale gas flow[D]. Hangzhou: China University of Metrology, 2018.
|
16 |
梅涛, 陈占秀, 杨历, 等. 非对称纳米通道内界面热阻的分子动力学研究[J]. 物理学报, 2020, 69(22): 326-338.
|
|
MEI Tao, CHEN Zhanxiu, YANG Li, et al. Molecular dynamics study of interface thermal resistance in asymmetric nanochannel[J]. Acta Physica Sinica, 2020, 69(22): 326-338.
|
17 |
高志强. 离子液体及其纳米流体热物性的分子动力学模拟[D]. 吉林: 东北电力大学, 2023.
|
|
GAO Zhiqiang. Molecular dynamics simulation on thermophysical properties of ionic liquid and ionic liquid-based nanofluids[D]. Jilin: Northeast Dianli University, 2023.
|
18 |
周健, 陆小华, 王延儒, 等. Lennard-Jones流体固液相变的分子动力学模拟[J]. 南京化工大学学报, 1997, 19(2): 20-25.
|
|
ZHOU Jian, LU Xiaohua, WANG Yanru, et al. Molecular dynamics simulation for the solid liquid transition of Lennard-Jones fluid[J]. Journal of Nanjing University of Chemical Technology (Natural Science Edition), 1997, 19(2): 20-25.
|
19 |
白璞. 粗糙度和润湿性影响沸腾的分子动力学研究[D]. 北京: 华北电力大学, 2022.
|
|
BAI Pu. Molecular dynamics study of boiling affected by roughness and wettability[D]. Beijing: North China Electric Power University, 2022.
|
20 |
BERENDSEN H J C, GRIGERA J R, STRAATSMA T P. The missing term in effective pair potentials[J]. The Journal of Physical Chemistry, 1987, 91(24): 6269-6271.
|
21 |
WU Nini, ZENG Liangcai, FU Ting, et al. Mechanism of heat transfer enhancement by nanochannels copper plate interface wettability: A molecular dynamics study[J]. International Journal of Thermal Sciences, 2021, 159: 106589.
|
22 |
曹炳阳, 陈民, 过增元. 粗糙微通道内气体流动的分子动力学研究[J]. 工程热物理学报, 2004, 25(S1): 131-134.
|
|
CAO Bingyang, CHEN Min, GUO Zengyuan. Molecular dynamics study on gas flow in rough microchannels[J]. Journal of Engineering Thermophysics, 2004, 25(S1): 131-134.
|
23 |
张龙艳. 微尺度下流体的流动换热及核化沸腾的分子动力学研究[D]. 北京: 华北电力大学, 2019.
|
|
ZHANG Longyan. Molecular dynamics simulation of fluid flow and heat transfer and nucleate boiling in microscale[D]. Beijing: North China Electric Power University, 2019.
|
24 |
孙杰, 何雅玲, 李印实, 等. 膜状冷凝初期过程的分子动力学模拟研究[J]. 西安交通大学学报, 2007, 41(9): 1087-1091.
|
|
SUN Jie, HE Yaling, LI Yinshi, et al. Molecular dynamics study on early stage of filmwise condensation[J]. Journal of Xi'an Jiaotong University, 2007, 41(9): 1087-1091.
|
25 |
刘峰瑞, 陈占秀, 李源华. 混合润湿性柱状纳米结构对铜板上纳米氩膜沸腾传热的影响[J]. 原子与分子物理学报, 2024, 41(3): 66-76.
|
|
LIU Fengrui, CHEN Zhanxiu, LI Yuanhua. Effects of columnar nanostructures with mixed wettability on explosive boiling heat transfer of nanoscale argon film over copper plate[J]. Journal of Atomic and Molecular Physics, 2024, 41(3): 66-76.
|
26 |
YAO Shuting, WANG Jiansheng, JIN Shufeng, et al. Atomistic insights into the microscope mechanism of solid-liquid interaction influencing convective heat transfer of nanochannel[J]. Journal of Molecular Liquids, 2023, 371: 121105.
|