化工进展 ›› 2024, Vol. 43 ›› Issue (S1): 144-153.DOI: 10.16085/j.issn.1000-6613.2024-0184

• 化工过程与装备 • 上一篇    下一篇

热源温度对非对称纳米通道流动换热的影响

苏瑶(), 陈占秀(), 杨历, 邢赫威, 呼和仓, 李源华   

  1. 河北工业大学能源与环境工程学院,天津 300401
  • 收稿日期:2024-01-24 修回日期:2024-03-18 出版日期:2024-11-20 发布日期:2024-12-06
  • 通讯作者: 陈占秀
  • 作者简介:苏瑶(2000—),女,硕士研究生,研究方向为微尺度流体流动及强化传热。E-mail:1033751287@qq.com
  • 基金资助:
    河北省自然科学基金(E2021202125)

Effect of heat source temperature on flow heat transfer in asymmetric nanochannels

SU Yao(), CHEN Zhanxiu(), YANG Li, XING Hewei, HU Hecang, LI Yuanhua   

  1. School of Energy and Environment Engineering, Hebei University of Technology, Tianjin 300401, China
  • Received:2024-01-24 Revised:2024-03-18 Online:2024-11-20 Published:2024-12-06
  • Contact: CHEN Zhanxiu

摘要:

为满足当前小型化、高性能电子器件的散热需求,流体在纳米通道内的流动传热成为研究焦点。本文采用分子动力学方法,模拟了不同热源温度下,水分子在非对称通道内的流动换热性能。结果表明,下部增设凹槽结构及改变热源温度对流体的流动及传热过程均会有所影响。凹槽结构增多会增强水分子在结构处的聚集能力,而热源温度升高会分散已形成的高质量密度区域;增设凹槽结构会削弱流体在通道内的整体流动速度,减小下壁面处的滑移速度,增大流动阻力系数,而升高热源温度与之作用相反,会改善水分子的流动过程;同一热源温度下,下部粗糙壁面附近的水分子温度要高于上壁面附近处,增设凹槽结构会增大固液之间的传热面积,减小固-液界面的温度跳跃长度,增大努塞尔特数,而升高热源温度会增大界面处的温度跳跃长度,削弱固液间的换热,拉大流体与加热壁面间的温差,降低努塞尔特数。

关键词: 热源温度, 流动, 传热, 分子模拟, 纳米结构, 非对称

Abstract:

In response to the current demand for miniaturized and high-performance heat dissipation in electronic devices, the study of fluid flow heat transfer within nanochannels has garnered significant attention. In this paper, the molecular dynamics simulation method was used to investigate the heat transfer characteristics of water molecules flowing through asymmetric channels under varying heat source temperatures. The results indicated that the fluid flow and heat transfer process were affected by the increase of the groove structure in the bottom part and the change of the heat source temperature. The increase of groove structure enhanced the gathering ability of water molecules at the structure, while higher heat source temperature dispersed the high-density region formed. However, increasing the groove structure weakened the overall flow velocity in the channel, reduced the velocity slip at the bottom wall surface, and increased the flow resistance coefficient. Conversely, increasing the heat source temperature had the opposite effect, improving the process of the water molecule flow. Under the same heat source temperature, the temperature of water molecules near the bottom rough wall surface was higher than that near the top wall surface. Increasing the groove structure will increase the heat transfer area between the solid-liquid, reduce the temperature jump length of the solid-liquid interface, and increase the Nusselt number. However, increasing the temperature of the heat source will enhance the temperature jump length of the interface, weaken the heat transfer between the solid-liquid, widen the temperature difference between the fluid and the heating wall, and decrease the Nusselt number.

Key words: heat source temperature, flow, heat transfer, molecular simulation, nanostructure, asymmetric

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn