化工进展 ›› 2024, Vol. 43 ›› Issue (8): 4477-4489.DOI: 10.16085/j.issn.1000-6613.2023-1096
• 材料科学与技术 • 上一篇
王洋1(), 张苗苗1, 吕阳1, 侯翠红2, 危常州3, 马文奇4, 张福锁1, 申建波1()
收稿日期:
2023-07-02
修回日期:
2023-08-05
出版日期:
2024-08-15
发布日期:
2024-09-02
通讯作者:
申建波
作者简介:
王洋(1997—),男,博士研究生,研究方向为绿色智能肥料创新。E-mail:b20223030281@cau.edu.cn。
基金资助:
WANG Yang1(), ZHANG Miaomiao1, LYU Yang1, HOU Cuihong2, WEI Changzhou3, MA Wenqi4, ZHANG Fusuo1, SHEN Jianbo1()
Received:
2023-07-02
Revised:
2023-08-05
Online:
2024-08-15
Published:
2024-09-02
Contact:
SHEN Jianbo
摘要:
肥料行业的发展正从传统化肥向新型肥料转变。肥料使用在保障粮食安全方面发挥了重大作用,但传统肥料利用率低、养分损失大、环境风险加剧,大多数肥料产品不能按照作物的营养需求规律实现养分精准供应。而智能肥料的研发与创新为解决该问题提供了有效途径,在时空上更精准匹配作物对养分的需求。本文系统综述了pH响应材料的类型、来源及响应机理,探讨pH响应材料的化学结构对pH响应行为的影响,提出pH响应材料促进根肥互馈的观点,剖析pH响应材料在智能肥料中的应用前景,进一步明确pH响应材料在绿色智能肥料创制领域的应用潜力、未来的研究方向及面临的挑战。文章以根肥互馈理念为核心,综合考虑pH响应材料与作物根际酸化效应,设计并利用pH响应材料把根分泌物与智能肥料有机连接,提出开发pH响应肥料的创新思路,指出根肥互馈是协同肥料养分释放和作物养分吸收的关键,提出基于根肥互馈原理匹配作物养分需求规律且具有环境友好性的绿色智能肥料将成为新型肥料的发展趋势。
中图分类号:
王洋, 张苗苗, 吕阳, 侯翠红, 危常州, 马文奇, 张福锁, 申建波. pH响应材料及其在智能肥料中的应用[J]. 化工进展, 2024, 43(8): 4477-4489.
WANG Yang, ZHANG Miaomiao, LYU Yang, HOU Cuihong, WEI Changzhou, MA Wenqi, ZHANG Fusuo, SHEN Jianbo. pH-responsive materials and their applications in intelligent fertilizer[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4477-4489.
分类 | pH响应材料 | pKa(25℃) | pH响应范围 | 材料制备机理 | 成本 /CNY·t-1 | 肥料种类 | 应用 作物 | 参考文献 |
---|---|---|---|---|---|---|---|---|
聚合物材料 | 聚丙烯酸 | 4.26 | <7 | 原子转移自由基聚合 | 8190 | 双焦磷酸铜钾三水合物 | 无 | [ |
N, N-甲基丙烯酸二甲氨基乙酯 | 7.4 | <7 | 原子转移自由基聚合 | 21000 | 磷酸锌铵 | 无 | [ | |
天然高分子材料 | 海藻酸 | 3~4.22 | <6 | 原位自由基聚合 | 176000 | 尿素、磷酸二氢钾和 磷酸二氢铵 | 无 | [ |
壳聚糖 | 6.5 | <5 | — | 19500 | FeSO4·7H2O | 番茄 | [ | |
羧甲基纤维素钠 | 4.33 | 5~10 | 自由基聚合 | 4800 | 尿素 | 小麦 | [ | |
木质素-Fe | — | <7 | 配位聚合 | 120000 | 羟基磷灰石 | 玉米 | [ |
表1 pH响应材料在肥料中的应用
分类 | pH响应材料 | pKa(25℃) | pH响应范围 | 材料制备机理 | 成本 /CNY·t-1 | 肥料种类 | 应用 作物 | 参考文献 |
---|---|---|---|---|---|---|---|---|
聚合物材料 | 聚丙烯酸 | 4.26 | <7 | 原子转移自由基聚合 | 8190 | 双焦磷酸铜钾三水合物 | 无 | [ |
N, N-甲基丙烯酸二甲氨基乙酯 | 7.4 | <7 | 原子转移自由基聚合 | 21000 | 磷酸锌铵 | 无 | [ | |
天然高分子材料 | 海藻酸 | 3~4.22 | <6 | 原位自由基聚合 | 176000 | 尿素、磷酸二氢钾和 磷酸二氢铵 | 无 | [ |
壳聚糖 | 6.5 | <5 | — | 19500 | FeSO4·7H2O | 番茄 | [ | |
羧甲基纤维素钠 | 4.33 | 5~10 | 自由基聚合 | 4800 | 尿素 | 小麦 | [ | |
木质素-Fe | — | <7 | 配位聚合 | 120000 | 羟基磷灰石 | 玉米 | [ |
15 | ZHANG Yu Shrike, KHADEMHOSSEINI Ali. Advances in engineering hydrogels[J]. Science, 2017, 356(6337): eaaf3627. |
16 | KOCAK G, TUNCER C, BÜTÜN V. pH-responsive polymers[J]. Polymer Chemistry, 2017, 8(1): 144-176. |
17 | OFRIDAM Fabrice, TARHINI Mohamad, LEBAZ Noureddine, et al. pH-sensitive polymers: Classification and some fine potential applications[J]. Polymers for Advanced Technologies, 2021, 32(4): 1455-1484. |
18 | WEI Menglian, GAO Yongfeng, LI Xue, et al. Stimuli-responsive polymers and their applications[J]. Polymer Chemistry, 2017, 8(1): 127-143. |
19 | LI Qingsi, WEN Chiyu, YANG Jing, et al. Zwitterionic biomaterials[J]. Chemical Reviews, 2022, 122(23): 17073-17154. |
20 | FELBER Arnaud E, DUFRESNE Marie-Hélène, LEROUX Jean-Christophe. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates[J]. Advanced Drug Delivery Reviews, 2012, 64(11): 979-992. |
21 | MONGE Sophie, CANNICCIONI Benjamin, DAVID Ghislain, et al. CHAPTER 1. Polymerization of phosphorus-containing (meth)acrylate monomers[M]// Polymer Chemistry Series. Cambridge: Royal Society of Chemistry, 2014: 1-18. |
22 | GABASTON L I, FURLONG S A, JACKSON R A, et al. Direct synthesis of novel acidic and zwitterionic block copolymers via TEMPO-mediated living free-radical polymerization[J]. Polymer, 1999, 40(16): 4505-4514. |
23 | LIU Miaomiao, SU Haijia, TAN Tianwei. Synthesis and properties of thermo- and pH-sensitive poly(N-isopropylacrylamide)/ polyaspartic acid IPN hydrogels[J]. Carbohydrate Polymers, 2012, 87(4): 2425-2431. |
24 | RAO Jingyi, ZHANG Yanfeng, ZHANG Jingyan, et al. Facile preparation of well-defined AB2 Y-shaped miktoarm star polypeptide copolymer via the combination of ring-opening polymerization and click chemistry[J]. Biomacromolecules, 2008, 9(10): 2586-2593. |
25 | GUAN Ying, ZHANG Yongjun. Boronic acid-containing hydrogels: Synthesis and their applications[J]. Chemical Society Reviews, 2013, 42(20): 8106-8121. |
26 | XU Chengyuan, YAN Yunfeng, TAN Jinchao, et al. Biodegradable nanoparticles of polyacrylic acid-stabilized amorphous CaCO3 for tunable pH-responsive drug delivery and enhanced tumor inhibition[J]. Advanced Functional Materials, 2019, 29(24): 1808146. |
27 | CHEN Hao, YANG Jie, SUN Lin, et al. Synergistic chemotherapy and photodynamic therapy of endophthalmitis mediated by zeolitic imidazolate framework-based drug delivery systems[J]. Small, 2019, 15(47): 1903880. |
28 | LUO Ruidong, DONG Jinfeng, LUO Yunbai. pH-responsive pickering emulsion stabilized by polymer-coated silica nanoaggregates and applied to recyclable interfacial catalysis[J]. RSC Advances, 2020, 10(69): 42423-42431. |
29 | XUE Ruiyang, ZHANG Wang, SUN Peng, et al. Angle-independent pH-sensitive composites with natural gyroid structure[J]. Scientific Reports, 2017, 7: 42207. |
30 | KIM Seon Jeong, LEE Chang Kee, KIM Sun I. Electrical/pH responsive properties of poly(2-acrylamido-2-methylpropane sulfonic acid)/hyaluronic acid hydrogels[J]. Journal of Applied Polymer Science, 2004, 92(3): 1731-1736. |
31 | SOHAIL Muhammad, AHMAD Mahmood, MINHAS Muhammad Usman, et al. Development and in vitro evaluation of high molecular weight chitosan based polymeric composites for controlled delivery of valsartan[J]. Advances in Polymer Technology, 2016, 35(4): 361-368. |
32 | MAZA Eliana, TUNINETTI Jimena S, POLITAKOS Nikolaos, et al. pH-responsive ion transport in polyelectrolyte multilayers of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA) bearing strong- and weak anionic groups[J]. Physical Chemistry Chemical Physics, 2015, 17(44): 29935-29948. |
33 | HU Jinming, ZHANG Guoying, GE Zhishen, et al. Stimuli-responsive tertiary amine methacrylate-based block copolymers: Synthesis, supramolecular self-assembly and functional applications[J]. Progress in Polymer Science, 2014, 39(6): 1096-1143. |
34 | HAN Xia, ZHANG Xuxia, ZHU Hongfan, et al. Effect of composition of PDMAEMA-b-PAA block copolymers on their pH- and temperature-responsive behaviors[J]. Langmuir, 2013, 29(4): 1024-1034. |
35 | BÜTÜN V, ARMES S P, BILLINGHAM N C. Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers[J]. Polymer, 2001, 42(14): 5993-6008. |
36 | Vural BÜTÜN, TAKTAK Fadime Fulya, TUNCER Cansel. Tertiary amine methacrylate-based ABC triblock copolymers: Synthesis, characterization, and self-assembly in both aqueous and nonaqueous media[J]. Macromolecular Chemistry and Physics, 2011, 212(11): 1115-1128. |
37 | TUNCER Cansel, SAMAV Yasemin, Damla ÜLKER, et al. Multi-responsive microgel of a water-soluble monomer via emulsion polymerization[J]. Journal of Applied Polymer Science, 2015, 132(24): e42072. |
38 | SAINI Bharti, KHUNTIA Snigdha, SINHA Manish Kumar. Incorporation of cross-linked poly(AA-co-ACMO) copolymer with pH responsive and hydrophilic properties to polysulfone ultrafiltration membrane for the mitigation of fouling behaviour[J]. Journal of Membrane Science, 2019, 572: 184-197. |
1 | 丁文成, 何萍, 周卫. 我国新型肥料产业发展战略研究[J]. 植物营养与肥料学报, 2023, 29(2): 201-221. |
DING Wencheng, HE Ping, ZHOU Wei. Development strategies of the new-type fertilizer industry in China[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(2): 201-221. | |
2 | 何丽娟. 基于ISM的农户有机肥使用行为影响因素系统研究——以陕西省苹果种植户为例[D]. 杨凌: 西北农林科技大学, 2020. |
HE Lijuan. The systematic study on the influencing factors of farmers' use of organic fertilizer based on ISM — Taking apple growers in Shaanxi Province as an example[D]. Yangling: Northwest A & F University, 2020. | |
3 | 张福锁, 申建波, 危常州, 等. 绿色智能肥料: 从原理创新到产业化实现[J]. 土壤学报, 2022, 59(4): 873-887. |
ZHANG Fusuo, SHEN Jianbo, WEI Changzhou, et al. Green intelligent fertilizer: From interdisciplinary innovation to industrialization realization[J]. Acta Pedologica Sinica, 2022, 59(4): 873-887. | |
4 | 耿鹏, 陈道兵, 周燕, 等. 增材制造智能材料研究现状及展望[J]. 材料工程, 2022, 50(6): 12-26. |
GENG Peng, CHEN Daobing, ZHOU Yan, et al. Research status and prospect of additive manufacturing of intelligent materials[J]. Journal of Materials Engineering, 2022, 50(6): 12-26. | |
5 | COHEN STUART Martien A, HUCK Wilhelm T S, GENZER Jan, et al. Emerging applications of stimuli-responsive polymer materials[J]. Nature Materials, 2010, 9(2): 101-113. |
6 | 王超, 李普旺, 宋书会, 等. 环境响应性高分子材料与肥料缓控释的研究进展[J]. 高分子通报, 2020 (10): 30-36. |
WANG Chao, LI Puwang, SONG Shuhui, et al. Progress in the study of environmental responsive polymer materials and controlled release of fertilizer[J]. Polymer Bulletin, 2020 (10): 30-36. | |
7 | LI Tao, Shaoyu LYU, YAN Jia, et al. An environment-friendly fertilizer prepared by layer-by-layer self-assembly for pH-responsive nutrient release[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 10941-10950. |
39 | Nieves GONZÁLEZ, ELVIRA Carlos, ROMÁN Julio San. Novel dual-stimuli-responsive polymers derived from ethylpyrrolidine[J]. Macromolecules, 2005, 38(22): 9298-9303. |
40 | Roshan DEEN G, Chin Hao MAH. Influence of external stimuli on the network properties of cationic poly(N-acryloyl-N′-propyl piperazine) hydrogels[J]. Polymer, 2016, 89: 55-68. |
41 | SEIDEL J, PINKRAH V T, MITCHELL J C, et al. Isothermal titration calorimetric studies of the acid-base properties of poly(N-isopropylacrylamide-co-4-vinylpyridine) cationic polyelectrolyte colloidal microgels[J]. Thermochimica Acta, 2004, 414(1): 47-52. |
42 | PINKRAH V T, SNOWDEN M J, MITCHELL J C, et al. Physicochemical properties of poly(N-isopropylacrylamide-co-4-vinylpyridine) cationic polyelectrolyte colloidal microgels[J]. Langmuir, 2003, 19(3): 585-590. |
43 | MATINI Teresa, FRANCINI Nora, BATTOCCHIO Anna, et al. Synthesis and characterization of variable conformation pH responsive block co-polymers for nucleic acid delivery and targeted cell entry[J]. Polymer Chemistry, 2014, 5(5): 1626-1636. |
44 | IMAE Toyoko. Chapter 2. Physicochemical properties of dendrimers and dendrimer complexes[M]//Dendrimer-based Drug Delivery Systems: From Theory to Practice. Hoboken: Wiley, 2012: 55-92. |
45 | GODBEY W T, WU Kenneth K, MIKOS Antonios G. Poly(ethylenimine) and its role in gene delivery[J]. Journal of Controlled Release, 1999, 60(2/3): 149-160. |
46 | FAN Xiaoxing, XIE Rui, ZHAO Qian, et al. Dual pH-responsive smart gating membranes[J]. Journal of Membrane Science, 2018, 555: 20-29. |
47 | CHIKH ALARD I, SOUBHYE J, BERGER G, et al. Triple-stimuli responsive polymers with fine tuneable magnetic responses[J]. Polymer Chemistry, 2017, 8(16): 2450-2456. |
48 | ZHU Rong, SU Lichao, DAI Jiayong, et al. Biologically responsive plasmonic assemblies for second near-infrared window photoacoustic imaging-guided concurrent chemo-immunotherapy[J]. ACS Nano, 2020, 14(4): 3991-4006. |
49 | ZHANG Zhen, KONG Xiangyu, XIAO Kai, et al. A bioinspired multifunctional heterogeneous membrane with ultrahigh ionic rectification and highly efficient selective ionic gating[J]. Advanced Materials, 2018, 30(7): 144-150. |
50 | SAINI Bharti, VAGHANI Dhwanil, KHUNTIA Snigdha, et al. A novel stimuli-responsive and fouling resistant PVDF ultrafiltration membrane prepared by using amphiphilic copolymer of poly(vinylidene fluoride) and Poly(2-N-morpholino)ethyl methacrylate[J]. Journal of Membrane Science, 2020, 603: 118047. |
8 | QIAO Dan, LI Juan, ZHANG Shuqing, et al. Controlled release fertilizer with temperature-responsive behavior coated using polyether polyol (PPG)/polycaprolactone (PCL) blend-based polyurethane performs smart nutrient release[J]. Materials Today Chemistry, 2022, 26: 101249. |
9 | BINDRA Pulkit, KAUR Kamaljit, RAWAT Ashima, et al. Nano-hives for plant stimuli controlled targeted iron fertilizer application[J]. Chemical Engineering Journal, 2019, 375: 121995. |
10 | ZHAO Fei, ZHOU Xingyi, LIU Yi, et al. Super moisture-absorbent gels for all-weather atmospheric water harvesting[J]. Advanced Materials, 2019, 31(10): e1806446. |
11 | FENG Chen, Shaoyu LYU, GAO Chunmei, et al. “Smart” fertilizer with temperature- and pH-responsive behavior via surface-initiated polymerization for controlled release of nutrients[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3157-3166. |
12 | ZHANG Xueru, CHABOT Denise, SULTAN Yasir, et al. Target-molecule-triggered rupture of aptamer-encapsulated polyelectrolyte microcapsules[J]. ACS Applied Materials & Interfaces, 2013, 5(12): 5500-5507. |
13 | RAIMONDI Giorgia, MAUCIERI Carmelo, TOFFANIN Arianna, et al. Smart fertilizers: What should we mean and where should we go?[J]. Italian Journal of Agronomy, 2021, 16(2): 1794. |
14 | YOON Ho Young, PHONG Nguyen Thanh, Eun-Nam JOE, et al. Crop root exudate composition-dependent disassembly of lignin-Fe-hydroxyapatite supramolecular structures: A better rhizosphere sensing platform for smart fertilizer development[J]. Advanced Sustainable Systems, 2021, 5(8): 2100113. |
51 | EGGERS Steffen, LAUTERBACH Felix, ABETZ Volker. Synthesis and self-assembly of high molecular weight polystyrene-block-poly[2-(N-morpholino)ethyl methacrylate]: A story about microphase separation, amphiphilicity, and stimuli-responsivity[J]. Polymer, 2016, 107: 357-367. |
52 | LIU Qingsheng, SINGH Anuradha, LIU Lingyun. Amino acid-based zwitterionic poly(serine methacrylate) as an antifouling material[J]. Biomacromolecules, 2013, 14(1): 226-231. |
53 | WU Yang, RAJU Cheerlavancha, HOU Zheng, et al. Mixed-charge pseudo-zwitterionic copolymer brush as broad spectrum antibiofilm coating[J]. Biomaterials, 2021, 273: 120794. |
54 | RIZWAN Muhammad, YAHYA Rosiyah, HASSAN Aziz, et al. pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications[J]. Polymers, 2017, 9(4): 137. |
55 | SAMALENS François, THOMAS Martin, CLAVERIE Marion, et al. Progresses and future prospects in biodegradation of marine biopolymers and emerging biopolymer-based materials for sustainable marine ecosystems[J]. Green Chemistry, 2022, 24(5): 1762-1779. |
56 | COOK Alexander B, DECUZZI Paolo. Harnessing endogenous stimuli for responsive materials in theranostics[J]. ACS Nano, 2021, 15(2): 2068-2098. |
57 | BONARDD Sebastian, NANDI Mridula, GARCÍA José Ignacio Hernández, et al. Self-healing polymeric soft actuators[J]. Chemical Reviews, 2023, 123(2): 736-810. |
58 | ZHANG Yunzhen, DONG Lezhen, LIU Lingyi, et al. Recent advances of stimuli-responsive polysaccharide hydrogels in delivery systems: A review[J]. Journal of Agricultural and Food Chemistry, 2022, 70(21): 6300-6316. |
59 | ZHAO Ming, LI Peiquan, ZHOU Hongjun, et al. pH/redox dual responsive from natural polymer-based nanoparticles for on-demand delivery of pesticides[J]. Chemical Engineering Journal, 2022, 435: 134861. |
60 | MUSARURWA Herbert, TAWANDA TAVENGWA Nikita. Recent progress in the application of pH-responsive polymers in separation science[J]. Microchemical Journal, 2022, 179: 107503. |
61 | SCHOELLER Jean, ITEL Fabian, Karin WUERTZ-KOZAK, et al. pH-responsive electrospun nanofibers and their applications[J]. Polymer Reviews, 2022, 62(2): 351-399. |
62 | GILLI Paola, PRETTO Loretta, BERTOLASI Valerio, et al. Predicting hydrogen-bond strengths from acid-base molecular properties. The pKa slide rule: Toward the solution of a long-lasting problem[J]. Accounts of Chemical Research, 2009, 42(1): 33-44. |
63 | REIJENGA Jetse, VAN HOOF Arno, VAN LOON Antonie, et al. Development of methods for the determination of pKa values[J]. Analytical Chemistry Insights, 2013, 8: 53-71. |
64 | LIU Fang, URBAN Marek W. Recent advances and challenges in designing stimuli-responsive polymers[J]. Progress in Polymer Science, 2010, 35(1/2): 3-23. |
65 | YU Qiyao, LI Zheng, DOU Chunyan, et al. Design and application of pH sensitive and intelligent hydrogels[J]. Progress in Chemistry, 2020, 32(2/3): 179-189. |
66 | ABOU TALEB Manal F. Radiation synthesis of multifunctional polymeric hydrogels for oral delivery of insulin[J]. International Journal of Biological Macromolecules, 2013, 62: 341-347. |
67 | 申建波, 白洋, 韦中, 等. 根际生命共同体: 协调资源、环境和粮食安全的学术思路与交叉创新[J]. 土壤学报, 2021, 58(4): 805-813. |
SHEN Jianbo, BAI Yang, WEI Zhong, et al. Rhizobiont: An interdisciplinary innovation and perspective for harmonizing resources, environment, and food security[J]. Acta Pedologica Sinica, 2021, 58(4): 805-813. | |
68 | 钟正燕, 陈炳发, 宋雁辉, 等. 根分泌物有机酸的研究方法[J]. 环境科学导刊, 2019, 38(S1): 12-18. |
ZHONG Zhengyan, CHEN Bingfa, SONG Yanhui, et al. Research methods on organic acids in root exudates[J]. Environmental Science Survey, 2019, 38(S1): 12-18. | |
69 | 魏莎, 李素艳, 孙向阳, 等. 根分泌物及其化感作用研究进展[J]. 北方园艺, 2010(18): 222-226. |
WEI Sha, LI Suyan, SUN Xiangyang, et al. Research progress in root exudates and allelopathy of root exudates[J]. Northern Horticulture, 2010(18): 222-226. | |
70 | WEN Zhihui, WHITE Philip J, SHEN Jianbo, et al. Linking root exudation to belowground economic traits for resource acquisition[J]. New Phytologist, 2022, 233(4): 1620-1635. |
71 | VERMA Shulbhi, VERMA Amit. Chapter 1. Plant root exudate analysis: Recent advances and applications[M]// Phytomicrobiome Interactions and Sustainable Agriculture. Hoboken: Wiley, 2021: 1-14. |
72 | WAREMBOURG F R, BILLES G. Estimating carbon transfers in the plant rhizosphere[M]//The Soil-root Interface. Amsterdam: Elsevier, 1979: 183-196. |
73 | HINSINGER Philippe, PLASSARD Claude, TANG Caixian, et al. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review[J]. Plant and Soil, 2003, 248(1): 43-59. |
74 | WANG Yanliang, LAMBERS Hans. Root-released organic anions in response to low phosphorus availability: Recent progress, challenges and future perspectives[J]. Plant and Soil, 2020, 447(1): 135-156. |
75 | WEN Zhihui, PANG Jiayin, RYAN Megan H, et al. In addition to foliar manganese concentration, both iron and zinc provide proxies for rhizosheath carboxylates in chickpea under low phosphorus supply[J]. Plant and Soil, 2021, 465(1): 31-46. |
76 | 周丽莉. 蚕豆、大豆、玉米根系质子和有机酸分泌差异及其在间作磷营养中的意义[D]. 北京: 中国农业大学, 2005. |
ZHOU Lili. Proton and organic acids exudated by faba bean, soybean, and maize and their significance in interspecific facilition on phosphorus uptake by intercropping[D]. Beijing: China Agricultural University, 2005. | |
77 | MA Zhiyuan, JIA Xin, ZHANG Guoxiang, et al. pH-responsive controlled-release fertilizer with water retention via atom transfer radical polymerization of acrylic acid on mussel-inspired initiator[J]. Journal of Agricultural and Food Chemistry, 2013, 61(23): 5474-5482. |
78 | RASHIDZADEH Azam, OLAD Ali. Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/MMT superabsorbent nanocomposite[J]. Carbohydrate Polymers, 2014, 114: 269-278. |
79 | LIN Xiangyu, GUO Lizhen, SHAGHALEH Hiba, et al. A TEMPO-oxidized cellulose nanofibers/MOFs hydrogel with temperature and pH responsiveness for fertilizers slow-release[J]. International Journal of Biological Macromolecules, 2021, 191: 483-491. |
80 | WANG Yuqi, SHAGHALEH Hiba, HAMOUD Youself Alhaj, et al. Synthesis of a pH-responsive nano-cellulose/sodium alginate/MOFs hydrogel and its application in the regulation of water and N-fertilizer[J]. International Journal of Biological Macromolecules, 2021, 187: 262-271. |
[1] | 谢蒙蒙, 刘健, 党蕊, 李美馨, 林晓婷, 苏舟, 王洁. 离子导电水凝胶的制备及在柔性电子领域的应用[J]. 化工进展, 2024, 43(6): 3128-3144. |
[2] | 杨磊, 邱广薇, 李思言, 葛宏程, 孙园园, 王菲, 范晓光. 基于温度和葡萄糖双重响应性共聚物微囊的胰岛素控释载体[J]. 化工进展, 2024, 43(6): 3277-3284. |
[3] | 熊文婷, 罗启基, 鄢春根. 二氧化硅基气凝胶材料及其制备技术的专利分析[J]. 化工进展, 2024, 43(4): 1912-1922. |
[4] | 朱泰忠, 张良, 黄泽权, 罗伶萍, 黄菲, 薛立新. 具有烷基磺酸侧链的凝胶型聚苯并咪唑质子交换膜的制备与表征[J]. 化工进展, 2024, 43(4): 1962-1971. |
[5] | 薛云娇, 张璇, 刘洋, 陈玉焕, 房静, 杨芳. 伪蛋白生物材料的分类、合成及其应用[J]. 化工进展, 2024, 43(4): 2001-2016. |
[6] | 刘萌萌, 秋列维, 万智卫, 李世婧, 许玉雨. 自愈水凝胶的设计原理及应用[J]. 化工进展, 2024, 43(3): 1350-1362. |
[7] | 王雄, 康文倩, 任悦, 乔彤森, 张鹏, 黄安平, 李广全. 多孔有机聚合物中试制备及其在聚烯烃催化剂中的应用[J]. 化工进展, 2024, 43(3): 1412-1417. |
[8] | 钱俊明, 郭猛, 任秀秀, 余亮, 钟璟, 徐荣. 芳烃官能化有机硅膜的制备及丙烯/丙烷分离性能[J]. 化工进展, 2024, 43(3): 1428-1435. |
[9] | 王凯, 罗明良, 李明忠, 黄飞飞, 蒲春生, 蒲景阳, 樊乔. 水驱油藏聚乙烯亚胺交联聚合物凝胶体系研究进展[J]. 化工进展, 2024, 43(3): 1506-1523. |
[10] | 王岩森, 侯丹丹, 李长金, 祁丽亚, 王春堯, 郭敏, 王颖. 氧化石墨烯/聚丙烯酸基导电黏附凝胶的制备与性能[J]. 化工进展, 2024, 43(2): 1022-1032. |
[11] | 剧芳. 基于银-硫配位的协同抗菌水凝胶的制备与性能[J]. 化工进展, 2024, 43(2): 1039-1046. |
[12] | 于笑笑, 巢艳红, 刘海燕, 朱文帅, 刘植昌. D-A共轭聚合强化光电性能及光催化CO2转化[J]. 化工进展, 2024, 43(1): 292-301. |
[13] | 孙月, 王斯佳, 吴明侠, 宋先雨, 徐首红. pH/温度响应型聚合物PMAA-b-PDMAEMA的合成、性能调控及应用[J]. 化工进展, 2024, 43(1): 480-489. |
[14] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[15] | 王少凡, 周颖, 郝康安, 黄安荣, 张如菊, 吴翀, 左晓玲. 具有pH响应性的自愈合蓝光水凝胶[J]. 化工进展, 2023, 42(9): 4837-4846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |