化工进展 ›› 2023, Vol. 42 ›› Issue (S1): 10-20.DOI: 10.16085/j.issn.1000-6613.2023-1221
收稿日期:
2023-07-18
修回日期:
2023-10-28
出版日期:
2023-10-25
发布日期:
2023-11-30
通讯作者:
肖辉
作者简介:
肖辉(1993—),男,助理研究员,研究方向为自然循环强化及多物理场协同优化。E-mail:xiaohui_hust@foxmail.com。
基金资助:
XIAO Hui(), ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng
Received:
2023-07-18
Revised:
2023-10-28
Online:
2023-10-25
Published:
2023-11-30
Contact:
XIAO Hui
摘要:
基于液态金属的螺旋管式换热器具有紧凑、换热能力强的特点,在热化学制氢、第四代核能、太阳能高温热发电、余热回收等能源化工系统极具价值,液态金属绕流管束流动传热问题越来越受到重视。然而,绕流管束湍流传热较复杂,实验和数值模拟难度较大,目前尚未有相关可靠文献综述,阻碍了该类换热器设计与技术进步。本文回顾了液态金属绕流管束相关研究,首先指出了液态金属流动传热特性与其他流体的异同,然后简述并比较了液态金属流动传热经验关系式,推荐了该类型换热器设计的流动传热经验公式,紧接着应用经验关系式分别对比了不同工质绕流管束、液态金属流经不同流道的流动传热性能。指出液态金属湍流传热具有一定强化潜力,且绕流管束带来形阻较大,建议采取减阻措施。本文为后续涉及液态金属绕流管束的换热器设计提供了参考。
中图分类号:
肖辉, 张显均, 兰治科, 王苏豪, 王盛. 液态金属绕流管束流动传热进展[J]. 化工进展, 2023, 42(S1): 10-20.
XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20.
工质 | ρ/kg·m-3 | μ/kg·m-1·s-1 | λ/W·m-1·K-1 | cp /J·kg-1·K-1 | Pr |
---|---|---|---|---|---|
高温熔盐 | 1687.8 | 2.17×10-3 | 0.56 | 1551.9 | 6.01 |
22MPa高压水 | 568.1 | 6.53×10-5 | 0.453 | 9448.7 | 1.36 |
液态金属LBE | 10246.3 | 1.63×10-3 | 12.60 | 143.7 | 0.019 |
7MPa氦气 | 5.249 | 3.356×10-5 | 0.266 | 5189.1 | 0.655 |
表1 典型工质在360℃的热物性
工质 | ρ/kg·m-3 | μ/kg·m-1·s-1 | λ/W·m-1·K-1 | cp /J·kg-1·K-1 | Pr |
---|---|---|---|---|---|
高温熔盐 | 1687.8 | 2.17×10-3 | 0.56 | 1551.9 | 6.01 |
22MPa高压水 | 568.1 | 6.53×10-5 | 0.453 | 9448.7 | 1.36 |
液态金属LBE | 10246.3 | 1.63×10-3 | 12.60 | 143.7 | 0.019 |
7MPa氦气 | 5.249 | 3.356×10-5 | 0.266 | 5189.1 | 0.655 |
1 | 张群力, 黄昊天, 张琳, 等. 喷淋式烟气源热泵冷凝余热回收系统性能分析[J]. 化工进展, 2023, 42(2): 650-657. |
ZHANG Qunli, HUANG Haotian, ZHANG Lin, et al. Analysis of condensation waste heat recovery system of spray flue gas source heat pump[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 650-657. | |
2 | 龙会松. 蒸汽发生器水室封头与管束组件环缝制造工艺分析[J]. 发电设备, 2022, 36(5): 355-357. |
LONG Huisong. Manufacturing process analysis of circumferential seam between water chamber head and tube bundle assembly of steam generators[J]. Power Equipment, 2022, 36(5): 355-357. | |
3 | 刘世杰, 莫逊, 涂爱民, 等. 新型纵流油冷却器壳程强化传热[J]. 化工进展, 2022, 41(7): 3475-3482. |
LIU Shijie, MO Xun, TU Aimin, et al. Shell-side heat transfer enhancement of a novel longitudinal flow oil cooler[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3475-3482. | |
4 | LI Haiyan, LIU Jing. Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-free heat exchangers[J]. Frontiers in Energy, 2011, 5(1): 20-42. |
5 | DENG Yueguang, JIANG Yi, LIU Jing. Low-melting-point liquid metal convective heat transfer: A review[J]. Applied Thermal Engineering, 2021, 193: 117021. |
6 | JI Yulong, WU Mengke, FENG Yanmin, et al. Experimental study on the effects of sodium and potassium proportions on the heat transfer performance of liquid metal high-temperature oscillating heat pipes[J]. International Journal of Heat and Mass Transfer, 2022, 194: 123116. |
7 | Nuclear-Energy-Agency. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermalhydraulics and technologies[M]. Paris: OECD Publishing, 2015. |
8 | REED Samuel, SUGO Heber, KISI Erich, et al. Extended thermal cycling of miscibility gap alloy high temperature thermal storage materials[J]. Solar Energy, 2019, 185: 333-340. |
9 | LIU Wei, XIAO Hui. Theoretical study on enhancing convective heat transfer based on strengthening synergy and reducing dissipation[J]. Scientia Sinica Technologica, 2021, 51(10): 1166-1177. |
10 | WANG Xinting, LIANG Yunmin, SUN Yue, et al. Experimental and numerical investigation on shell-side performance of a double shell-pass rod baffle heat exchanger[J]. International Journal of Heat and Mass Transfer, 2019, 132: 631-642. |
11 | 邓靜. 螺旋缠绕管换热器流动传热性能研究[D]. 郑州: 郑州大学, 2016. |
DENG Jing. The heat transfer and flow characteristics analysis of helically coiled tube heat exchanger[D]. Zhengzhou: Zhengzhou University, 2016. | |
12 | EL-GENK Mohamed S, SCHRIENER Timothy M. A review of experimental data and heat transfer correlations for parallel flow of alkali liquid metals and lead-bismuth eutectic in bundles[J]. Nuclear Engineering and Design, 2017, 317: 199-219. |
13 | JAEGER Wadim. Heat transfer to liquid metals with empirical models for turbulent forced convection in various geometries[J]. Nuclear Engineering and Design, 2017, 319: 12-27. |
14 | HOLMAN J P. Heat transfer [M]. 10th ed. Boston: McGraw-Hill, 2010. |
15 | JAKOB Max. Discussion: “Heat transfer and flow resistance in cross flow of gases over tube banks” (PIERSON O L, HUGE E C, GRIMISON E D, 1937, trans. ASME, 59, pp. 563-594)[J]. Journal of Fluids Engineering, 1938, 60(4): 384-386. |
16 | ŽKAUSKAS A. Heat transfer from tubes in crossflow[M]//Advances in Heat Transfer. Amsterdam: Elsevier, 1987: 87-159. |
17 | IDELCHIK I E. Handbook of hydraulic resistance, 4th Edition Revised and augmented[M]. 4th ed. New York: Begell House Inc., 2008. |
18 | JAMESON S L. Discussion: “A general correlation of friction factors for various types of surfaces in crossflow” (GUNTER A Y, SHAW W A, 1945, trans. ASME, 67, pp. 643-656)[J]. Journal of Fluids Engineering, 1945, 67(8): 658-659. |
19 | VASSALLO Peter, SYMOLON Paul. Friction factor measurements in an equally spaced triangular array of circular tubes[J]. Journal of Fluids Engineering, 2008, 130(4): 1. |
20 | GILLI P V. Heat transfer and pressure drop for cross flow through banks of multistart helical tubes with uniform inclinations and uniform longitudinal pitches[J]. Nuclear Science and Engineering, 1965, 22(3): 298-314. |
21 | 吕科锋. 液态铅铋合金在带绕丝棒束组件内热工水力行为研究[D]. 合肥: 中国科学技术大学, 2016. |
Kefeng LYU. Study on thermohydraulic behavior of liquid Pb-Bi alloy in wire-wound rod bundle assembly[D].Hefei: University of Science and Technology of China, 2016. | |
22 | SHAMS A, DE SANTIS A, KOLOSZAR L K, et al. Status and perspectives of turbulent heat transfer modelling in low-Prandtl number fluids[J]. Nuclear Engineering and Design, 2019, 353: 110220. |
23 | CHENG Xu, Nam-il TAK. Investigation on turbulent heat transfer to lead-bismuth eutectic flows in circular tubes for nuclear applications[J]. Nuclear Engineering and Design, 2006, 236(4): 385-393. |
24 | XIE Xiaoyang, ZHAO Houjian, LI Xiaowei, et al. Numerical investigation on heat transfer characteristics of liquid metal cross flow over tube bundles[J]. Annals of Nuclear Energy, 2023, 180: 109465. |
25 | MASTERSON Robert. Nuclear reactor thermal hydraulics: An introduction to nuclear heat transfer and fluid flow[M] CRC Press, 2020.. |
26 | KIM Namhyeong, KIM Hyungmo, Jaehyuk EOH, et al. One-dimensional design approach to integrated steam generator with helical-coil tube bundles for a sodium-cooled fast reactor[J]. Nuclear Engineering and Design, 2020, 361: 110554. |
27 | GILLI P V. Heat transfer characteristics of helical tube bundles as used in steam generators of gas-cooled reactors [Z]. ICPUAEUN. Geneva. 1964 |
28 | 尹清辽, 孙玉良, 居怀明, 等. 模块式高温气冷堆超临界蒸汽发生器设计[J]. 原子能科学技术, 2006, 40(6): 707-713. |
YIN Qingliao, SUN Yuliang, JU Huaiming, et al. Supercritical steam generator design of modular high-temperature gas-cooled reactor[J]. Atomic Energy Science and Technology, 2006, 40(6): 707-713. | |
29 | 杨自强. 小型模块化反应堆螺旋管式直流蒸汽发生器热工水力研究[D]. 重庆: 重庆大学, 2018. |
YANG Ziqiang. Study on thermal hydraulics of helical tube steam generator for small modular reactor[D]. Chongqing: Chongqing University, 2018. | |
30 | 范弘毅, 李晓伟, 吴莘馨, 等. 高温气冷堆螺旋管式超临界蒸汽发生器热工水力程序开发及分析[J]. 原子能科学技术, 2022, 56(11): 2343-2353. |
FAN Hongyi, LI Xiaowei, WU Xinxin, et al. Thermal-hydraulic code development and analysis of HTGR helical tube supercritical steam generator[J]. Atomic Energy Science and Technology, 2022, 56(11): 2343-2353. | |
31 | 李晓伟, 吴莘馨, 张作义. 高温气冷堆螺旋管式直流蒸汽发生器热工水力学[J]. 原子能科学技术, 2019, 53(10): 1906-1917. |
LI Xiaowei, WU Xinxin, ZHANG Zuoyi. Thermal hydraulics of HTGR helical tube once through steam generator[J]. Atomic Energy Science and Technology, 2019, 53(10): 1906-1917. | |
32 | NEERAAS Bengt O, FREDHEIM Arne O, AUNAN Bjørn. Experimental shell-side heat transfer and pressure drop in gas flow for spiral-wound LNG heat exchanger[J]. International Journal of Heat and Mass Transfer, 2004, 47(2): 353-361. |
33 | MOSTAFAZADE ABOLMAALI Ali, AFSHIN Hossein. Development of Nusselt number and friction factor correlations for the shell side of spiral-wound heat exchangers[J]. International Journal of Thermal Sciences, 2019, 139: 105-117. |
34 | SHEN Cong, LIU Limin, XU Ziyi, et al. Influence of helix angle on flow and heat transfer characteristics of lead-bismuth flow in helical-coiled tube bundles[J]. Annals of Nuclear Energy, 2023, 180: 109483. |
35 | 刘尚华. 螺旋管内核态沸腾流动与换热特性数值模拟分析[D]. 哈尔滨: 哈尔滨工程大学, 2017. |
LIU Shanghua. Numerical simulation the flow and heat transfer characteristics of nucleate boiling in helically coiled tubes[D]. Harbin: Harbin Engineering University, 2017. | |
36 | HOE R J, DROPKIN D, DWYER O E. Heat-transfer rates to crossflowing mercury in a staggered tube bank—Ⅰ[J]. Journal of Fluids Engineering, 1957, 79(4): 899-905. |
37 | RICKARD C L, DWYER O E, DROPKIN D. Heat-transfer rates to cross-flowing mercury in a staggered tube bank—Ⅱ[J]. Journal of Fluids Engineering, 1958, 80(3): 646-652. |
38 | 赵后剑, 谢箫阳, 高伟凯, 等. 液态铅铋合金横掠管束对流换热数值计算[J]. 工程热物理学报, 2021, 42(7): 1837-1843. |
ZHAO Houjian, XIE Xiaoyang, GAO Weikai, et al. Numerical simulation of liquid lead-bismuth eutectic cross flow heat transfer over tube bundles[J]. Journal of Engineering Thermophysics, 2021, 42(7): 1837-1843. | |
39 | DWYER O. Recent developments in liquid-metal heat transfer [J]. Atomic Energy Review, 1966, 4(BNL-9597). |
40 | BORISHANSKIY V, ANDREYEVSKIY A, ZHILKINA V, et al. Heat transfer of tube bundles in cross-flow of liquid metal [M]. Moscow: Gosatomizdat, 1963. |
41 | BEZNOSOV Alexandr Viktorovich, YARMONOV Mikhail Vladimirovich, ZUDIN Artyom Dmitrievich, et al. Experimental studies of heat transfer characteristics and properties of the cross-flow pipe flow melt lead[J]. Open Journal of Microphysics, 2014, 4(4): 54-65. |
42 | ABRAMOV Alexey G, LEVCHENYA Alexander M, SMIRNOV Evgueni M, et al. Numerical simulation of liquid metal turbulent heat transfer from an inline tube bundle in cross-flow[J]. St Petersburg Polytechnical University Journal: Physics and Mathematics, 2015, 1(4): 356-363. |
43 | KALISH Sheldon, DWYER Orrington E. Heat transfer to NaK flowing through unbaffled rod bundles[J]. International Journal of Heat and Mass Transfer, 1967, 10(11): 1533-1558. |
44 | Hsu CHIA-JUNG. Analytical study of heat transfer to liquid metals in cross-flow through rod bundles[J]. International Journal of Heat and Mass Transfer, 1964, 7(4): 431-446. |
45 | XU Rongshuan, ZHANG Dalin, TIAN Wenxi, et al. Thermal-hydraulic analysis code development for sodium heated once-through steam generator[J]. Annals of Nuclear Energy, 2019, 127: 385-394. |
46 | 杨宇鹏, 王成龙, 张大林, 等. 液态金属螺旋管式直流蒸汽发生器数值模拟研究[J]. 原子能科学技术, 2021, 55(7): 1288-1295. |
YANG Yupeng, WANG Chenglong, ZHANG Dalin, et al. Numerical study of liquid metal helical coil once-through tube steam generator[J]. Atomic Energy Science and Technology, 2021, 55(7): 1288-1295. | |
47 | YANG Yupeng, LI Yong, WANG Chenglong, et al. Parametric sensitivity analysis of liquid metal helical coil once-through tube steam generator[J]. Nuclear Engineering and Design, 2021, 383: 111427. |
48 | LI Xiaowei, WU Xinxin, HE Shuyan. Numerical investigation of the turbulent cross flow and heat transfer in a wall bounded tube bundle[J]. International Journal of Thermal Sciences, 2014, 75: 127-139. |
49 | KATINAS V, TUMOSA A. Heat transfer and flow past tube bundles in the wall region[J]. Heat Transfer Research, 1993, 25: 161-164. |
50 | ZHANG Yan, WANG Chenglong, CAI Rong, et al. Experimental investigation on flow and heat transfer characteristics of lead-bismuth eutectic in circular tubes[J]. Applied Thermal Engineering, 2020, 180: 115820. |
51 | MIKITYUK Konstantin. Heat transfer to liquid metal: Review of data and correlations for tube bundles[J]. Nuclear Engineering and Design, 2009, 239(4): 680-687. |
52 | RAZZAGHPANAH Zahra, SARUNAC Nenad. Natural convection heat transfer from a vertical column of finite number of heated circular cylinders immersed in molten solar salt[J]. International Journal of Heat and Mass Transfer, 2019, 134: 694-706. |
[1] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[2] | 杨玉地, 李文韬, 钱永康, 惠军红. 工业燃烧室天然气湍流扩散火焰长度影响因素分析[J]. 化工进展, 2023, 42(S1): 267-275. |
[3] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[4] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[5] | 汪健生, 张辉鹏, 刘雪玲, 傅煜郭, 朱剑啸. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
[6] | 王云刚, 焦健, 邓世丰, 赵钦新, 邵怀爽. 冷凝换热与协同脱硫性能实验分析[J]. 化工进展, 2023, 42(8): 4230-4237. |
[7] | 郭文杰, 翟玉玲, 陈文哲, 申鑫, 邢明. Al2O3-CuO/水混合纳米流体对流传热性能及热经济性分析[J]. 化工进展, 2023, 42(5): 2315-2324. |
[8] | 刘厚励, 顾中浩, 阳康, 张莉. 3D打印槽道结构槽宽对池沸腾传热特性的影响[J]. 化工进展, 2023, 42(5): 2282-2288. |
[9] | 齐承鲁, 张忠良, 王明超, 李耀鹏, 宫晓辉, 孙鹏, 郑斌. 内置管束布置对换热器内固体颗粒流动的影响[J]. 化工进展, 2023, 42(5): 2306-2314. |
[10] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[11] | 马润梅, 杨海超, 李正大, 李双喜, 赵祥, 章国庆. 表面强化镀层对高速轴承腔密封端面变形及摩擦磨损影响分析[J]. 化工进展, 2023, 42(4): 1688-1697. |
[12] | 尚玉, 肖满, 崔秋芳, 涂特, 晏水平. CO2捕集工艺中热再生气余热的PVDF/BN-OH平板复合膜回收特性[J]. 化工进展, 2023, 42(3): 1618-1628. |
[13] | 谢迎春, 马洪亭, 徐畅, 马硕, 陈默, 刘军, 孙国强. 竖管渗流降膜蒸发式冷凝器传热特性分析[J]. 化工进展, 2023, 42(3): 1187-1194. |
[14] | 高婷婷, 蒋振, 吴晓毅, 郝婷婷, 马学虎, 温荣福. 微乳液脉动热管应用于锂离子电池的散热性能[J]. 化工进展, 2023, 42(3): 1167-1177. |
[15] | 邹银才, 李清国, 吴辉, 钟小兵, 陈咸志. 弹载相变热沉传热仿真与优化[J]. 化工进展, 2023, 42(3): 1248-1256. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |