化工进展 ›› 2023, Vol. 42 ›› Issue (S1): 1-9.DOI: 10.16085/j.issn.1000-6613.2023-0435
收稿日期:
2023-03-22
修回日期:
2023-07-10
出版日期:
2023-10-25
发布日期:
2023-11-30
通讯作者:
王云飞
作者简介:
王云飞(1990—),男,博士后研究员,主要从事水合物开采,二氧化碳封存方向研究。E-mail:wangyf93@cnooc.com.cn。
基金资助:
WANG Yunfei(), QIN Rui, ZHENG Lijun, LI Yan, LI Qingping
Received:
2023-03-22
Revised:
2023-07-10
Online:
2023-10-25
Published:
2023-11-30
Contact:
WANG Yunfei
摘要:
旋转填充床(RPB)反应器凭借填料对液体的切割破碎作用,可以显著强化多相流之间的质量传递,大幅度减少反应时间。但是旋转填充床内部结构和流体力学规律极为复杂,即便使用高速摄像机也很难准确描述填料内的流动和传质规律。计算流体动力学(CFD)凭借其能够有效模拟多相流动过程中的流动和传质规律的独特优势,近年来已被许多研究人员用来模拟RPB反应器中的流动和反应特性。本文综述了近些年来学者利用CFD技术模拟旋转填充床反应器的研究进展,并着重总结了多相流模型的选取、边界条件的确定以及旋转填充床的简化方法等CFD计算中的关键部分。
中图分类号:
王云飞, 秦蕊, 郑利军, 李焱, 李清平. 旋转填充床CFD模拟研究进展[J]. 化工进展, 2023, 42(S1): 1-9.
WANG Yunfei, QIN Rui, ZHENG Lijun, LI Yan, LI Qingping. Research progress of rotating packed bed simulation through CFD method[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 1-9.
多相流模型 | 模型维度 | 研究内容 | 参考文献 |
---|---|---|---|
VOF模型 | 二维 | 液相速度、停留时间 | Shi等[ |
VOF模型 | 二维 | 速度速度、填料中的持液率 | Wu等[ |
VOF模型 | 二维 | 碘化物-碘酸盐反应微混效率 | Guo等[ |
VOF模型 | 二维 | 二氧化碳吸收持液率、液体停留时间 | Xie等[ |
VOF模型 | 二维 | 二氧化碳吸过程液膜流动和传质特性 | Xie等[ |
VOF模型 | 二维 | RPB装置喷嘴结构 | Zhang等[ |
VOF模型 | 二维 | 二氧化碳MEA吸收过程吸收效率 | Li等[ |
VOF模型 | 三维 | 持液率、液体比表面积 | Xie等[ |
VOF模型 | 三维 | 接触面积、液体流型 | Zhang等[ |
Euler模型 | 二维 | 压降、填料中的持液率 | Lu等[ |
Euler模型 | 二维 | 二氧化碳吸收过程气相压降、吸收效率 | Lu等[ |
Euler模型 | 三维 | 压降、持液率 | Rabiee等[ |
Euler模型 | 二维 | 压降、持液率 | Zhang等[ |
表1 利用不同多相流模型进行CFD计算
多相流模型 | 模型维度 | 研究内容 | 参考文献 |
---|---|---|---|
VOF模型 | 二维 | 液相速度、停留时间 | Shi等[ |
VOF模型 | 二维 | 速度速度、填料中的持液率 | Wu等[ |
VOF模型 | 二维 | 碘化物-碘酸盐反应微混效率 | Guo等[ |
VOF模型 | 二维 | 二氧化碳吸收持液率、液体停留时间 | Xie等[ |
VOF模型 | 二维 | 二氧化碳吸过程液膜流动和传质特性 | Xie等[ |
VOF模型 | 二维 | RPB装置喷嘴结构 | Zhang等[ |
VOF模型 | 二维 | 二氧化碳MEA吸收过程吸收效率 | Li等[ |
VOF模型 | 三维 | 持液率、液体比表面积 | Xie等[ |
VOF模型 | 三维 | 接触面积、液体流型 | Zhang等[ |
Euler模型 | 二维 | 压降、填料中的持液率 | Lu等[ |
Euler模型 | 二维 | 二氧化碳吸收过程气相压降、吸收效率 | Lu等[ |
Euler模型 | 三维 | 压降、持液率 | Rabiee等[ |
Euler模型 | 二维 | 压降、持液率 | Zhang等[ |
1 | RAMSHAW C, HOWARD M R. Mass transfer apparatus and its use: EP0002568 [P]. 1979-06-27. |
2 | XIE Peng, LU Xuesong, YANG Xin, et al. Characteristics of liquid flow in a rotating packed bed for CO2 capture: A CFD analysis[J]. Chemical Engineering Science, 2017, 172: 216-229. |
3 | 初广文, 邹海魁, 曾晓飞, 等. 超重力反应强化技术及工业应用[J]. 北京化工大学学报(自然科学版), 2018, 45(5): 33-39. |
CHU Guangwen, ZOU Haikui, ZENG Xiaofei, et al. High-gravity reaction process intensification and its industrial applications[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2018, 45(5): 33-39. | |
4 | 陈建峰, 初广文, 邹海魁. 超重力反应工程[M]. 北京: 化学工业出版社, 2020. |
CHEN Jianfeng, CHU Guangwen, ZOU Haikui. HiGee chemical reaction engineering[M]. Beijing: Chemical Industry Press, 2020. | |
5 | ZHAO Hong, SHAO Lei, CHEN Jianfeng. High-gravity process intensification technology and application[J]. Chemical Engineering Journal, 2010, 156(3): 588-593. |
6 | BURNS J R, RAMSHAW C. Process intensification: Visual study of liquid maldistribution in rotating packed beds[J]. Chemical Engineering Science, 1996, 51(8): 1347-1352. |
7 | ZHANG Jianwen, GAO Dongxia, LI Yachao, et al. Study on micromixing and reaction process in a rotating packed bed[J]. International Journal of Heat and Mass Transfer, 2016, 101: 1063-1074. |
8 | NEUMANN Kolja, GLADYSZEWSKI Konrad, Kai GROß, et al. A guide on the industrial application of rotating packed beds[J]. Chemical Engineering Research and Design, 2018, 134: 443-462. |
9 | LIN Chiachang, JIAN Guoshing. Characteristics of a rotating packed bed equipped with blade packings[J]. Separation and Purification Technology, 2007, 54(1): 51-60. |
10 | CHEN Qiuyun, CHU Guangwen, LUO Yong, et al. Polytetrafluoroe-thylene wire mesh packing in a rotating packed bed: Mass-transfer studies[J]. Industrial & Engineering Chemistry Research, 2016, 55(44): 11606-11613. |
11 | AGARWAL L, PAVANI V, RAO D P, et al. Process intensification in HiGee absorption and distillation: Design procedure and applications[J]. Industrial & Engineering Chemistry Research, 2010, 49(20): 10046-10058. |
12 | LIN Chiachang, Tsungjen HO, LIU Wentzong. Distillation in a rotating packed bed[J]. Journal of Chemical Engineering of Japan, 2002, 35(12): 1298-1304. |
13 | LI Xiuping, LIU Youzhi, LI Zhiqiang, et al. Continuous distillation experiment with rotating packed bed[J]. Chinese Journal of Chemical Engineering, 2008, 16(4): 656-662. |
14 | WANG G Q, XU Z C, YU Y L, et al. Performance of a rotating zigzag bed—A new HiGee[J]. Chemical Engineering and Processing: Process Intensification, 2008, 47(12): 2131-2139. |
15 | ZHANG Liangliang, WANG Jiexin, XIANG Yang, et al. Absorption of carbon dioxide with ionic liquid in a rotating packed bed contactor: Mass transfer study[J]. Industrial & Engineering Chemistry Research, 2011, 50(11): 6957-6964. |
16 | ZHANG Liangliang, WANG Jiexin, LIU Zhiping, et al. Efficient capture of carbon dioxide with novel mass-transfer intensification device using ionic liquids[J]. AIChE Journal, 2013, 59(8): 2957-2965. |
17 | XIANG Liangyu, WU Liankun, GAO Lidong, et al. Pilot scale applied research on CO2 removal of natural gas using a rotating packed bed with propylene carbonate[J]. Chemical Engineering Research and Design, 2019, 150: 33-39. |
18 | SUN Baochang, ZOU Haikui, CHU Guangwen, et al. Determination of mass-transfer coefficient of CO2 in NH3 and CO2 absorption by materials balance in a rotating packed bed[J]. Industrial & Engineering Chemistry Research, 2012, 51(33): 10949-10954. |
19 | ZHANG Wei, XIE Peng, LI Yuxing, et al. Hydrodynamic characteristics and mass transfer performance of rotating packed bed for CO2 removal by chemical absorption: A review[J]. Journal of Natural Gas Science and Engineering, 2020, 79: 103373. |
20 | IM D, JUNG H, LEE J H. Modeling, simulation and optimization of the rotating packed bed (RPB) absorber and stripper for MEA-based carbon capture[J]. Computers & Chemical Engineering, 2020, 143: 107102. |
21 | YANG Yucheng, OUYANG Yi, ZHANG Na, et al. A review on computational fluid dynamic simulation for rotating packed beds[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(4): 1017-1031. |
22 | DHANEESH K P, RANGANATHAN P. A comprehensive review on the hydrodynamics, mass transfer and chemical absorption of CO2 and modelling aspects of rotating packed bed[J]. Separation and Purification Technology, 2022, 295: 121248. |
23 | OUYANG Yi, ZOU Haikui, GAO Xueying, et al. Computational fluid dynamics modeling of viscous liquid flow characteristics and end effect in rotating packed bed[J]. Chemical Engineering and Processing: Process Intensification, 2018, 123: 185-194. |
24 | OUYANG Yi, XIANG Yang, GAO Xueying, et al. Micromixing efficiency optimization of the premixer of a rotating packed bed by CFD[J]. Chemical Engineering and Processing: Process Intensification, 2019, 142: 107543. |
25 | OUYANG Yi, XIANG Yang, GAO Xueying, et al. Micromixing efficiency in a rotating packed bed with non-Newtonian fluid[J]. Chemical Engineering Journal, 2018, 354: 162-171. |
26 | LIU Yi, LUO Yong, CHU Guangwen, et al. Liquid microflow inside the packing of a rotating packed bed reactor: Computational, observational and experimental studies[J]. Chemical Engineering Journal, 2020, 386: 121134. |
27 | Hugo LLERENA-CHAVEZ, LARACHI Faïçal. Analysis of flow in rotating packed beds via CFD simulations—Dry pressure drop and gas flow maldistribution[J]. Chemical Engineering Science, 2009, 64(9): 2113-2126. |
28 | YANG Yucheng, XIANG Yang, LI Yingang, et al. 3D CFD modelling and optimization of single-phase flow in rotating packed beds[J]. The Canadian Journal of Chemical Engineering, 2015, 93(6): 1138-1148. |
29 | SHI Xin, XIANG Yang, WEN Lixiong, et al. CFD analysis of liquid phase flow in a rotating packed bed reactor[J]. Chemical Engineering Journal, 2013, 228: 1040-1049. |
30 | ALOPAEUS Ville, HYNYNEN Katja, AITTAMAA Juhani, et al. Modeling of gas-liquid packed-bed reactors with momentum equations and local interaction closures[J]. Industrial & Engineering Chemistry Research, 2006, 45(24): 8189-8198. |
31 | GUO Fen, ZHENG Chong, GUO Kai, et al. Hydrodynamics and mass transfer in cross-flow rotating packed bed[J]. Chemical Engineering Science, 1997, 52(21/22): 3853-3859. |
32 | GHADYANLOU Farhad, AZARI Ahmad, VATANI Ali. A review of modeling rotating packed beds and improving their parameters: Gas-liquid contact[J]. Sustainability, 2021, 13(14): 8046. |
33 | LI Shuangjun, DENG Shuai, ZHAO Li, et al. Mathematical modeling and numerical investigation of carbon capture by adsorption: Literature review and case study[J]. Applied Energy, 2018, 221: 437-449. |
34 | KUMAR M P, RAO D P. Studies on a high-gravity gas-liquid contactor[J]. Industrial & Engineering Chemistry Research, 1990, 29(5): 917-920. |
35 | DAHL S R, HRENYA C M. Size segregation in gas-solid fluidized beds with continuous size distributions[J]. Chemical Engineering Science, 2005, 60(23): 6658-6673. |
36 | RICE R B, HRENYA C M. Clustering in rapid granular flows of binary and continuous particle size distributions[J]. Physical Review E, 2010, 81(2): 021302. |
37 | OUYANG Jie, LI Jinghai. Particle-motion-resolved discrete model for simulating gas-solid fluidization[J]. Chemical Engineering Science, 1999, 54(13/14): 2077-2083. |
38 | WU Wei, LUO Yong, CHU Guangwen, et al. Liquid flow behavior in a multiliquid-inlet rotating packed bed reactor with three-dimensional printed packing[J]. Chemical Engineering Journal, 2020, 386: 121537. |
39 | GUO Tianyu, SHI Xin, CHU Guangwen, et al. Computational fluid dynamics analysis of the micromixing efficiency in a rotating-packed-bed reactor[J]. Industrial & Engineering Chemistry Research, 2016, 55(17): 4856-4866. |
40 | LU X, XIE P, INGHAM D B, et al. Modelling of CO2 absorption in a rotating packed bed using an Eulerian porous media approach[J]. Chemical Engineering Science, 2019, 199: 302-318. |
41 | LU X, XIE P, INGHAM D B, et al. A porous media model for CFD simulations of gas-liquid two-phase flow in rotating packed beds[J]. Chemical Engineering Science, 2018, 189: 123-134. |
42 | HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. |
43 | GAO Zhengming, MA Shugang, SHI Dantong, et al. Droplet characteristics and behaviors in a high-speed disperser[J]. Chemical Engineering Science, 2015, 126: 329-340. |
44 | GUO Tianyu, CHENG Kunpeng, WEN Lixiong, et al. Three-dimensional simulation on liquid flow in a rotating packed bed reactor[J]. Industrial & Engineering Chemistry Research, 2017, 56(28): 8169-8179. |
45 | YANG Yucheng, XIANG Yang, CHU Guangwen, et al. A noninvasive X-ray technique for determination of liquid holdup in a rotating packed bed[J]. Chemical Engineering Science, 2015, 138: 244-255. |
46 | OUYANG Yi, WANG Siwen, XIANG Yang, et al. CFD analyses of liquid flow characteristics in a rotor-stator reactor[J]. Chemical Engineering Research and Design, 2018, 134: 186-197. |
47 | GOLSHAN Shahab, RABIEE Roshanak, SHAMS Alireza, et al. On the volume of fluid simulation details and droplet size distribution inside rotating packed beds[J]. Industrial & Engineering Chemistry Research, 2021, 60(24): 8888-8900. |
48 | XIE Peng, LU Xuesong, DING Hongbing, et al. A mesoscale 3D CFD analysis of the liquid flow in a rotating packed bed[J]. Chemical Engineering Science, 2019, 199: 528-545. |
49 | ZHANG Guojun, INGHAM Derek, MA Lin, et al. Modelling of 3D liquid dispersion in a rotating packed bed using an Eulerian porous medium approach[J]. Chemical Engineering Science, 2022, 250: 117393. |
50 | PHAM D A, LIM Y, JEE H, et al. Porous media Eulerian computational fluid dynamics (CFD) model of amine absorber with structured-packing for CO2 removal[J]. Chemical Engineering Science, 2015, 132: 259-270. |
51 | PHAM D A, LIM Y, JEE H, et al. Effect of ship tilting and motion on amine absorber with structured-packing for CO2 removal from natural gas[J]. AIChE Journal, 2015, 61(12): 4412-4425. |
52 | Andrzej KOŁODZIEJ, Joanna ŁOJEWSKA, Mieczysław JAROSZYŃSKI, et al. Heat transfer and flow resistance for stacked wire gauzes: Experiments and modelling[J]. International Journal of Heat and Fluid Flow, 2012, 33(1): 101-108. |
53 | ARMOUR J C, CANNON J N. Fluid flow through woven screens[J]. AIChE Journal, 1968, 14(3): 415-420. |
54 | ERGUN S. Fluid flow through packed columns[J]. Chem. Eng. Progress, 1952, 48: 89-94. |
55 | Andrzej KOŁODZIEJ, Joanna ŁOJEWSKA. Experimental and modelling study on flow resistance of wire gauzes[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(3): 816-822. |
56 | RABIEE Roshanak, MONZAVI Mohammad, SHABANIAN Jaber, et al. Two-phase flow characterization of a rotating packed bed through CFD simulation in OpenFOAM[J]. Chemical Engineering Science, 2022, 253: 117589. |
57 | XIE Peng, LU Xuesong, INGHAM Derek, et al. Mass transfer characteristics of the liquid film flow in a rotating packed bed for CO2 capture: A micro-scale CFD analysis[J]. Energy Procedia, 2017, 142: 3407-3414. |
58 | ZHANG Wei, XIE Peng, LI Yuxing, et al. CFD analysis of the hydrodynamic characteristics in a rotating packed bed with multi-nozzles[J]. Chemical Engineering and Processing: Process Intensification, 2020, 158: 108107. |
59 | LI Wenling, LIANG Hongwei, WANG Jianhong, et al. CFD modeling on the chemical absorption of CO2 in a microporous tube-in-tube microchannel reactor[J]. Fuel, 2022, 327: 125064. |
60 | ZHANG Wei, XIE Peng, LI Yuxing, et al. 3D CFD simulation of the liquid flow in a rotating packed bed with structured wire mesh packing[J]. Chemical Engineering Journal, 2022, 427: 130874. |
61 | ZHANG Wei, XIE Peng, LI Yuxing, et al. Modeling of gas-liquid flow in a rotating packed bed using an Eulerian multi-fluid approach[J]. AIChE Journal, 2022, 68(4): e17561. |
62 | LIU Yi, WU Wei, LUO Yong, et al. CFD simulation and high-speed photography of liquid flow in the outer cavity zone of a rotating packed bed reactor[J]. Industrial & Engineering Chemistry Research, 2019, 58(13): 5280-5290. |
63 | YANG Wenjing, WANG Yundong, CHEN Jianfeng, et al. Computational fluid dynamic simulation of fluid flow in a rotating packed bed[J]. Chemical Engineering Journal, 2010, 156(3): 582-587. |
64 | YANG Yucheng, XIANG Yang, CHU Guangwen, et al. CFD modeling of gas-liquid mass transfer process in a rotating packed bed[J]. Chemical Engineering Journal, 2016, 294: 111-121. |
65 | CHEN Wencong, FAN Yawei, ZHANG Liangliang, et al. Computational fluid dynamic simulation of gas-liquid flow in rotating packed bed: A review[J]. Chinese Journal of Chemical Engineering, 2022, 41: 85-108. |
66 | 张政,张军,郑冲. 旋转床填料空间液体的液相传质分析[J]. 工程热物理学报,1998, 19(1): 86-89. |
ZHANG Zheng, ZHANG Jun, ZHENG Chong. Mass-transfer analysis of liquids in the voids of rotating packed bed[J]. Journal of Engineering Thermophysics, 1998, 19(1): 86-89. | |
67 | GUO Kai, GUO Fen, FENG Yuanding, et al. Synchronous visual and RTD study on liquid flow in rotating packed-bed contactor[J]. Chemical Engineering Science, 2000, 55(9): 1699-1706. |
68 | NOVOZHILOV V. Computational fluid dynamics modeling of compartment fires[J]. Progress in Energy and Combustion Science, 2001, 27(6): 611-666. |
69 | JONES W P, LAUNDER B E. The prediction of laminarization with a two-equation model of turbulence[J]. International Journal of Heat and Mass Transfer, 1972, 15(2): 301-314. |
70 | 赵静, 魏英杰, 张嘉钟, 等. 不同湍流模型对空化流动模拟结果影响的研究[J]. 工程力学, 2009, 26(8): 233-238. |
ZHAO Jing, WEI Yingjie, ZHANG Jiazhong, et al. Effect of various turbulence models on simulated results of cavitating flow[J]. Engineering Mechanics, 2009, 26(8): 233-238. | |
71 | 马国华, 于凤荣, 张思青. 三种κ-ε模型模拟混流式水轮机转轮叶片湍流场差异性比较[J]. 水电能源科学, 2014, 32(8): 148-152. |
MA Guohua, YU Fengrong, ZHANG Siqing. Comparison of numerical simulation of hydraulic turbine with three different κ-ε models[J]. Water Resources and Power, 2014, 32(8): 148-152. | |
72 | LE MOULLEC Yann, POTIER Olivier, GENTRIC Caroline, et al. Flow field and residence time distribution simulation of a cross-flow gas-liquid wastewater treatment reactor using CFD[J]. Chemical Engineering Science, 2008, 63(9): 2436-2449. |
73 | LI Hangtian, YUAN Zhiguo, LIU Youzhi, et al. Characteristics of liquid flow in a countercurrent rotating bed[J]. Chemical Engineering and Processing - Process Intensification, 2019, 136: 72-81. |
[1] | 孙继鹏, 韩靖, 唐杨超, 闫汉博, 张杰瑶, 肖苹, 吴峰. 硫黄湿法成型过程数值模拟与操作参数优化[J]. 化工进展, 2023, 42(S1): 189-196. |
[2] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[3] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[4] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[5] | 田启凯, 郑海萍, 张少斌, 张静, 余子夷. 混合增强的微流控通道进展[J]. 化工进展, 2023, 42(4): 1677-1687. |
[6] | 乔元, 仇畅, 钱锦远, 干瑞彬, 徐春明, 金志江. 笼式调节阀的冲蚀磨损与空蚀[J]. 化工进展, 2023, 42(10): 5111-5120. |
[7] | 邱沫凡, 蒋琳, 刘荣正, 刘兵, 唐亚平, 刘马林. 气固流化床化学反应数值模拟中颗粒尺度模型研究进展[J]. 化工进展, 2023, 42(10): 5047-5058. |
[8] | 彭德其, 冯源, 王依然, 谭卓伟, 俞天兰, 吴淑英. 立式缩放管内液固颗粒群浓度分布与汇聚特性[J]. 化工进展, 2022, 41(9): 4662-4672. |
[9] | 古新, 张前欣, 王超鹏, 方运阁, 李宁, 王永庆. U形导流板换热器传热和阻力性能分析[J]. 化工进展, 2022, 41(7): 3465-3474. |
[10] | 徐涵卓, 刘志浩, 孙宝昌, 张亮亮, 邹海魁, 罗勇, 初广文. 流体驱动旋转装备应用与数值模拟方法研究进展[J]. 化工进展, 2022, 41(6): 2806-2817. |
[11] | 陈龙, 李霞霞, 李伟祥, 戚锐, 邓鑫, 吴斌鑫. 聚丙烯非织造布熔喷过程的计算流体力学模拟研究进展[J]. 化工进展, 2022, 41(2): 537-553. |
[12] | 朱明军, 胡大鹏. 操作参数对三相卧螺离心机油水砂分离性能影响模拟及实验分析[J]. 化工进展, 2022, 41(10): 5188-5199. |
[13] | 林伟翔, 苏港川, 陈强, 文键, AKRAPHON Janon, 王斯民. 沉浸式换热器超声强化传热影响因素[J]. 化工进展, 2022, 41(1): 40-51. |
[14] | 王戈, 孙志伟, 谭蔚, 邱威, 朱国瑞. 异形纤维阵列过滤特性的数值模拟[J]. 化工进展, 2022, 41(1): 30-39. |
[15] | 王凯, 黄慧, 南翠红, 王跃社, 卢金玲. 油水分层流条件下腐蚀动力学特性模拟[J]. 化工进展, 2021, 40(S2): 40-47. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |