化工进展 ›› 2023, Vol. 42 ›› Issue (10): 5487-5500.DOI: 10.16085/j.issn.1000-6613.2022-2044
章萍萍(), 丁书海, 高晶晶, 赵敏, 俞海祥, 刘玥宏, 谷麟()
收稿日期:
2022-11-02
修回日期:
2022-12-22
出版日期:
2023-10-15
发布日期:
2023-11-11
通讯作者:
谷麟
作者简介:
章萍萍(1999—),女,硕士研究生,研究方向为高浓度有机废水处理。E-mail:zhangpp9909@163.com。
ZHANG Pingping(), DING Shuhai, GAO Jingjing, ZHAO Min, YU Haixiang, LIU Yuehong, GU Lin()
Received:
2022-11-02
Revised:
2022-12-22
Online:
2023-10-15
Published:
2023-11-11
Contact:
GU Lin
摘要:
可见光有效利用率低、光生载流子复合快是导致传统光催化剂在应用于降解水中有机污染物中效率不高、应用受限的主要原因。碳量子点(carbon quantum dots,CQDs)作为新兴的纳米零维材料,用其修饰半导体光催化剂能够抑制光生载流子复合、加速载流子的分离与转移、改善光谱响应范围、增强吸附性能、促进间接氧化过程中过渡金属还原,有效增强光催化剂催化降解水中有机污染物。本文主要介绍了CQDs修饰半导体复合光催化剂材料在降解水中各类有机污染物中的应用,重点阐述了CQDs及其修饰半导体复合光催化剂材料的合成以及CQDs在多相光催化体系中的增强作用;简要说明了光降解实验参数、CQDs改性对光催化反应活性的影响;最后对CQDs修饰半导体复合光催化剂发展过程中尚待解决的问题进行了总结并对未来发展方向进行了展望。
中图分类号:
章萍萍, 丁书海, 高晶晶, 赵敏, 俞海祥, 刘玥宏, 谷麟. 碳量子点修饰半导体复合光催化剂降解水中有机污染物[J]. 化工进展, 2023, 42(10): 5487-5500.
ZHANG Pingping, DING Shuhai, GAO Jingjing, ZHAO Min, YU Haixiang, LIU Yuehong, GU Lin. Carbon quantum dots modified semiconductor composite photocatalysts for degradation of organic pollutants in water[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5487-5500.
合成方法 | 优点 | 缺点 | 文献 |
---|---|---|---|
自上而下 | |||
电化学法 | 制备的CQDs的均匀性较好;碳源利用率高 | 步骤烦琐耗时;量子产率较低 | [ |
激光销蚀法 | — | 使用仪器昂贵;量子产率较低;制备的CQDs杂质多 | [ |
超声剥离 | 操作过程简单方便;反应条件温和 | 量子产率较低;反应时间较长 | [ |
化学氧化法 | 碳源较易获得;产物有利于进一步修饰 | 反应时间较长;后处理复杂,产物不易收集;存在环境问题;制备的CQDs粒径不够均一 | [ |
自下而上 | |||
微波辅助法 | 操作简便快捷 | 制备的CQDs粒径不均匀 | [ |
热解法 | 操作简便;碳源成本低;适宜大规模制备 | 反应时间较长;能源消耗大 | [ |
水热/溶剂热法 | 操作简便;成本较低;制备的CQDs粒径均匀; 量子产率较高 | 反应时间较长;能源消耗大 | [ |
模板法 | 量子产率较高,粒径分布均匀;水溶性好; 生物毒性低 | 步骤相对复杂 | [ |
表1 不同CQDs合成方法的优缺点
合成方法 | 优点 | 缺点 | 文献 |
---|---|---|---|
自上而下 | |||
电化学法 | 制备的CQDs的均匀性较好;碳源利用率高 | 步骤烦琐耗时;量子产率较低 | [ |
激光销蚀法 | — | 使用仪器昂贵;量子产率较低;制备的CQDs杂质多 | [ |
超声剥离 | 操作过程简单方便;反应条件温和 | 量子产率较低;反应时间较长 | [ |
化学氧化法 | 碳源较易获得;产物有利于进一步修饰 | 反应时间较长;后处理复杂,产物不易收集;存在环境问题;制备的CQDs粒径不够均一 | [ |
自下而上 | |||
微波辅助法 | 操作简便快捷 | 制备的CQDs粒径不均匀 | [ |
热解法 | 操作简便;碳源成本低;适宜大规模制备 | 反应时间较长;能源消耗大 | [ |
水热/溶剂热法 | 操作简便;成本较低;制备的CQDs粒径均匀; 量子产率较高 | 反应时间较长;能源消耗大 | [ |
模板法 | 量子产率较高,粒径分布均匀;水溶性好; 生物毒性低 | 步骤相对复杂 | [ |
CQDs的作用 | 光催化材料 | 污染物 | 带隙宽度/eV | 吸收边/nm | 文献 | ||
---|---|---|---|---|---|---|---|
CQDs引入前 | CQDs引入后 | CQDs引入前 | CQDs引入后 | ||||
光谱转换器 | NCQDs/BiO1-x Br | 氧氟沙星 | BiOBr:3.24 | NCQDs/BiO1-xBr:2.96 | BiOBr:425 | 红移 | [ |
CQDs/g-C3N4 | 双酚A | g-C3N4:2.70 | CQDs/g-C3N4:2.57 | g-C3N4:450 | 红移 | [ | |
CQDs/CeO2/BiOCl | 罗丹明B | CeO2:2.90 BiOCl:3.40 | CQDs/CeO2/BiOCl:2.23 | — | 红移 | [ | |
光敏剂 | CQDs/ZnO | 苯酚 | ZnO:3.26 | CQDs/ZnO:2.96 | — | 红移 | [ |
CQDs/TiO2 | 苯酚 | TiO2:3.2 | CQDs/TiO2:2.9 | TiO2:390 | CQDs/TiO2:425 | [ | |
TiO2/WO3/CQDs | 头孢氨苄 | TiO2:3.18 TiO2/WO3:2.76 | TiO2/WO3/CQDs:2.61 | TiO2:390 | TiO2/CQDs:475 TiO2/WO3/CQDs:红移 | [ | |
CQDs/g-C3N4/Bi2MoO6 | 环丙沙星 | g-C3N4:2.70 Bi2MoO6/g-C3N4:2.64 | CQDs/Bi2MoO6/g-C3N4:2.07 | g-C3N4:443 Bi2MoO6 /g-C3N4:520 | CQDs/Bi2MoO6 /g-C3N4:599 | [ |
表2 复合光催化剂带隙宽度及光响应范围
CQDs的作用 | 光催化材料 | 污染物 | 带隙宽度/eV | 吸收边/nm | 文献 | ||
---|---|---|---|---|---|---|---|
CQDs引入前 | CQDs引入后 | CQDs引入前 | CQDs引入后 | ||||
光谱转换器 | NCQDs/BiO1-x Br | 氧氟沙星 | BiOBr:3.24 | NCQDs/BiO1-xBr:2.96 | BiOBr:425 | 红移 | [ |
CQDs/g-C3N4 | 双酚A | g-C3N4:2.70 | CQDs/g-C3N4:2.57 | g-C3N4:450 | 红移 | [ | |
CQDs/CeO2/BiOCl | 罗丹明B | CeO2:2.90 BiOCl:3.40 | CQDs/CeO2/BiOCl:2.23 | — | 红移 | [ | |
光敏剂 | CQDs/ZnO | 苯酚 | ZnO:3.26 | CQDs/ZnO:2.96 | — | 红移 | [ |
CQDs/TiO2 | 苯酚 | TiO2:3.2 | CQDs/TiO2:2.9 | TiO2:390 | CQDs/TiO2:425 | [ | |
TiO2/WO3/CQDs | 头孢氨苄 | TiO2:3.18 TiO2/WO3:2.76 | TiO2/WO3/CQDs:2.61 | TiO2:390 | TiO2/CQDs:475 TiO2/WO3/CQDs:红移 | [ | |
CQDs/g-C3N4/Bi2MoO6 | 环丙沙星 | g-C3N4:2.70 Bi2MoO6/g-C3N4:2.64 | CQDs/Bi2MoO6/g-C3N4:2.07 | g-C3N4:443 Bi2MoO6 /g-C3N4:520 | CQDs/Bi2MoO6 /g-C3N4:599 | [ |
1 | 水博阳, 宋小三, 范文江. 光催化技术在水处理中的研究进展及挑战[J]. 化工进展, 2021, 40(S2): 356-363. |
SHUI Boyang, SONG Xiaosan, FAN Wenjiang. Research progress and challenges of photocatalytic technology in water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 356-363. | |
2 | MEI Aoxue, XU Zijun, WANG Xiyuan, et al. Photocatalytic materials modified with carbon quantum dots for the degradation of organic pollutants under visible light: A review[J]. Environmental Research, 2022, 214: 114160. |
3 | XU Zheng, SHI Weilong, SHI Yuxing, et al. Carbon dots as solid-state electron mediator and electron acceptor in S-scheme heterojunction for boosted photocatalytic hydrogen evolution[J]. Applied Surface Science, 2022, 595: 153482. |
4 | XU Xiaoyou, Ray Robert, GU Yunlong, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40): 12736-12737. |
5 | PIRSAHEB Meghdad, ASADI Anvar, Mika SILLANPÄÄ, et al. Application of carbon quantum dots to increase the activity of conventional photocatalysts: A systematic review[J]. Journal of Molecular Liquids, 2018, 271: 857-871. |
6 | HAN Mei, ZHU Shoujun, LU Siyu, et al. Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications[J]. Nano Today, 2018, 19: 201-218. |
7 | VELUMANI Arun, SENGODAN Prabhu, ARUMUGAM Priyadharsan, et al. Carbon quantum dots supported ZnO sphere based photocatalyst for dye degradation application[J]. Current Applied Physics, 2020, 20(10): 1176-1184. |
8 | MIAO Xuli, YUE Xiaoyang, JI Zhenyuan, et al. Nitrogen-doped carbon dots decorated on g-C3N4/Ag3PO4 photocatalyst with improved visible light photocatalytic activity and mechanism insight[J]. Applied Catalysis B: Environmental, 2018, 227: 459-469. |
9 | ZHOU Qin, HUANG Weiya, XU Chong, et al. Novel hierarchical carbon quantum dots-decorated BiOCl nanosheet/carbonized eggshell membrane composites for improved removal of organic contaminants from water via synergistic adsorption and photocatalysis[J]. Chemical Engineering Journal, 2021, 420: 129582. |
10 | 王雅君, 张文灿, 李宇明, 等. 碳点用于光催化分解水制氢的研究进展[J]. 化工进展, 2021, 40(6): 2952-2961. |
WANG Yajun, ZHANG Wencan, LI Yuming, et al. Research progress of carbon dots in photocatalytic hydrogen production[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2952-2961. | |
11 | PREEYANGHAA Mani, VINESH Vasudevan, SABARIKIRISHW ARAN Ponnambalam, et al. Investigating the role of ultrasound in improving the photocatalytic ability of CQD decorated boron-doped g-C3N4 for tetracycline degradation and first-principles study of nitrogen-vacancy formation[J]. Carbon, 2022, 192: 405-417. |
12 | NIE Youliang, BAO Rui, YI Jianhong, et al. Highly efficient heterostructures of C3N4 and o-GQDs with enrichment of specific oxygen-containing groups for photocatalytic applications[J]. Journal of Alloys and Compounds, 2022, 923: 166327. |
13 | JIANG Kai, WANG Yuhui, GAO Xiaolu, et al. Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation[J]. Angewandte Chemie International Edition, 2018, 57(21): 6216-6220. |
14 | WANG Caifeng, CHENG Rui, JI Wenqing, et al. Recognition of latent fingerprints and ink-free printing derived from interfacial segregation of carbon dots[J]. ACS Applied Materials & Interfaces, 2018, 10(45): 39205-39213. |
15 | KRYSMANN Marta J, ANTONIOS Kelarakis, PANAGIOTIS Dallas, et al. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission[J]. Journal of the American Chemical Society, 2012, 134(2): 747-750. |
16 | YUAN Fanglong, WANG Zhibin, LI Xiaohong, et al. Light-emitting diodes: Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes [J]. Advanced Materials, 2017, 29(3): 1604436. |
17 | YAO Yu, ZHANG Huayang, HU Kunsheng, et al. Carbon dots based photocatalysis for environmental applications[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107336. |
18 | 黄启同, 林小凤, 李飞明, 等. 碳量子点的合成与应用[J]. 化学进展, 2015, 27(11): 1604-1614. |
HUANG Qitong, LIN Xiaofeng, LI Feiming, et al. Synthesis and applications of carbon dots[J]. Progress in Chemistry, 2015, 27(11): 1604-1614. | |
19 | TAO Huiquan, YANG Kai, MA Zhen, et al. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite[J]. Small, 2012, 8(2): 281-290. |
20 | LI Xiangcao, FU Yanzhao, ZHAO Shaojing, et al. Metal ions-doped carbon dots: Synthesis, properties, and applications[J]. Chemical Engineering Journal, 2022, 430: 133101. |
21 | DANG Van Dien, ADORNA JoemerJr, ANNADURAI Thamilselvan, et al. Indirect Z-scheme nitrogen-doped carbon dot decorated Bi2MoO6/g-C3N4 photocatalyst for enhanced visible-light-driven degradation of ciprofloxacin[J]. Chemical Engineering Journal, 2021, 422: 130103. |
22 | LI Xueying, SUN Haibo, XIE Yuanyuan, et al. Principles, synthesis and applications of dual Z-scheme photocatalysts[J]. Coordination Chemistry Reviews, 2022, 467: 214596. |
23 | LI Yuejun, CAO Tieping, MEI Zemin, et al. Development of double heterojunction of Pr2Sn2O7@Bi2Sn2O7/TiO2 for hydrogen production[J]. Journal of Physics and Chemistry of Solids, 2020, 142: 109457. |
24 | SENG Ru Xuan, TAN Lling-Lling, LEE W P Cathie, et al. Nitrogen-doped carbon quantum dots-decorated 2D graphitic carbon nitride as a promising photocatalyst for environmental remediation: A study on the importance of hybridization approach[J]. Journal of Environmental Management, 2020, 255: 109936. |
25 | SUN Xianbo, HE Weiyu, YANG Tao, et al. Ternary TiO2/WO3/CQDs nanocomposites for enhanced photocatalytic mineralization of aqueous cephalexin: Degradation mechanism and toxicity evaluation[J]. Chemical Engineering Journal, 2021, 412: 128679. |
26 | AI Lin, SHI Run, YANG Jie, et al. Efficient combination of g-C3N4 and CDs for enhanced photocatalytic performance: A review of synthesis, strategies, and applications[J]. Small, 2021, 17(48): 2007523. |
27 | YANG Qi, MA Yinghao, CHEN Fei, et al. Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water[J]. Chemical Engineering Journal, 2019, 378: 122149. |
28 | LI Bo, FANG Qian, SI Yuan, et al. Ultra-thin tubular graphitic carbon nitride-carbon dot lateral heterostructures: One-step synthesis and highly efficient catalytic hydrogen generation[J]. Chemical Engineering Journal, 2020, 397: 125470. |
29 | JIAO Yingying, LI Yike, WANG Jianshe, et al. Exfoliation-induced exposure of active sites for g-C3N4/N-doped carbon dots heterojunction to improve hydrogen evolution activity[J]. Molecular Catalysis, 2020, 497: 111223. |
30 | YANG Hui, DAI Kai, ZHANG Jinfeng, et al. Inorganic-organic hybrid photocatalysts: Syntheses, mechanisms, and applications[J]. Chinese Journal of Catalysis, 2022, 43(8): 2111-2140. |
31 | YANG Jun, MIAO Hong, JING Jianfang, et al. Photocatalytic activity enhancement of PDI supermolecular via π-π action and energy level adjusting with graphene quantum dots[J]. Applied Catalysis B: Environmental, 2021, 281: 119547. |
32 | XIE Xiaoyun, LI Shan, QI Kemin, et al. Photoinduced synthesis of green photocatalyst Fe3O4/BiOBr/CQDs derived from corncob biomass for carbamazepine degradation: The role of selectively more CQDs decoration and Z-scheme structure[J]. Chemical Engineering Journal, 2021, 420: 129705. |
33 | GAO Wensu, ZHANG Shurong, WANG Guiqiao, et al. A review on mechanism, applications and influencing factors of carbon quantum dots based photocatalysis[J]. Ceramics International, 2022, 48(24): 35986-35999. |
34 | BEHNOOD Reza, SODEIFIAN Gholamhossein. Synthesis of N doped-CQDs/Ni doped-ZnO nanocomposites for visible light photodegradation of organic pollutants[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103821. |
35 | GAO Xing, DU Wenxin, GONG Xinchao, et al. Carbon quantum dots promote charge transfer of Ce0.7Zr0.3O2@Bi2MoO6 heterojunction for efficient photodegradation of RhB in visible region[J]. Optical Materials, 2020, 105: 109828. |
36 | ZHANG Yuanyuan, LI Yue, YUAN Yuan, et al. C-dots decorated SrTiO3/NH4V4O10 Z-scheme heterojunction for sustainable antibiotics removal: Reaction kinetics, DFT calculation and mechanism insight[J]. Separation and Purification Technology, 2022, 295: 121268. |
37 | LAI Yen-Ju, LEE Duu-Jong. Solid mediator Z-scheme heterojunction photocatalysis for pollutant oxidation in water: Principles and synthesis perspectives[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 125: 88-114. |
38 | HU Zhongzheng, XIE Xiaoyun, LI Shan, et al. Rational construct CQDs/BiOCOOH/uCN photocatalyst with excellent photocatalytic performance for degradation of sulfathiazole[J]. Chemical Engineering Journal, 2021, 404: 126541. |
39 | LI Chaoqun, ZHAO Ziqing, WANG Xingyue, et al. Carbon quantum dots induce in-situ formation of oxygen vacancies and domination of {0 0 1}facets in BiOBr microflower for simultaneous removal of aqueous tetracycline and hexavalent chromium[J]. Chemical Engineering Journal, 2022, 442: 136249. |
40 | MUTHULINGAM S, Kang bin BAE, KHAN Rizwan, et al. Carbon quantum dots decorated N-doped ZnO: Synthesis and enhanced photocatalytic activity on UV, visible and daylight sources with suppressed photocorrosion[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 1148-1155. |
41 | 刘禹杉, 李伟, 吴鹏, 等. 水热炭化制备碳量子点及其应用[J]. 化学进展, 2018, 30(4): 349-364. |
LIU Yushan, LI Wei, WU Peng, et al. Preparation and applications of carbon quantum dots prepared via hydrothermal carbonization method[J]. Progress in Chemistry, 2018, 30(4): 349-364. | |
42 | ZHANG Zijing, WANG Yang, GAO Peng, et al. Visible-light-driven photocatalytic degradation of ofloxacin by BiOBr nanocomposite modified with oxygen vacancies and N-doped CQDs: Enhanced photodegradation performance and mechanism[J]. Chemosphere, 2022, 307: 135976. |
43 | LU Kangqiang, QUAN Quan, ZHANG Nan, et al. Multifarious roles of carbon quantum dots in heterogeneous photocatalysis[J]. Journal of Energy Chemistry, 2016, 25(6): 927-935. |
44 | SHARMA Sheetal, DUTTA Vishal, SINGH Pardeep, et al. Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: A review[J]. Journal of Cleaner Production, 2019, 228: 755-769. |
45 | LIANG Huiqin, TAI Xiumei, DU Zhiping, et al. Enhanced photocatalytic activity of ZnO sensitized by carbon quantum dots and application in phenol wastewater[J]. Optical Materials, 2020, 100: 109674. |
46 | MING Hongbo, WEI Danlei, YANG Yang, et al. Photocatalytic activation of peroxymonosulfate by carbon quantum dots functionalized carbon nitride for efficient degradation of bisphenol A under visible-light irradiation[J]. Chemical Engineering Journal, 2021, 424: 130296. |
47 | BAI Jingyi, WANG Xin, HAN Gui, et al. CQDs decorated oxygen vacancy-rich CeO2/BiOCl heterojunctions for promoted visible light photoactivity towards chromium (Ⅵ) reduction and rhodamine B degradation[J]. Journal of Alloys and Compounds, 2021, 859: 157837. |
48 | ZHAO Baoxiu, XU Hao, ZHANG Keliu, et al. Visible-light-driven CQDs/TiO2 photocatalytic simultaneous removal of Cr(Ⅵ) and organics: Cooperative reaction, kinetics and mechanism[J]. Chemosphere, 2022, 307(Pt2): 135897. |
49 | NUGRAHA Muhammad Wahyu, ABIDIN Nur Hafizah Zainal, SUPANDI, et al. Synthesis of tungsten oxide/amino-functionalized sugarcane bagasse derived-carbon quantum dots (WO3/N-CQDs) composites for methylene blue removal[J]. Chemosphere, 2021, 277: 130300. |
50 | WANG Jianlong, WANG Shizong. A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application[J]. Coordination Chemistry Reviews, 2022, 453: 214338. |
51 | YOU Qinglun, ZHANG Qianxin, GU Mengbin, et al. Self-assembled graphitic carbon nitride regulated by carbon quantum dots with optimized electronic band structure for enhanced photocatalytic degradation of diclofenac[J]. Chemical Engineering Journal, 2022, 431: 133927. |
52 | GONG Jun, ZHANG Zheye, ZENG Zhiping, et al. Graphene quantum dots assisted exfoliation of atomically-thin 2D materials and as-formed 0D/2D van der Waals heterojunction for HER[J]. Carbon, 2021, 184: 554-561. |
53 | XU Minghan, ZHANG Wei, YANG Zhi, et al. One-pot liquid-phase exfoliation from graphite to graphene with carbon quantum dots[J]. Nanoscale, 2015, 7(23): 10527-10534. |
54 | GHOSH Utpal, Anjali PAL. Insight into the multiple roles of nitrogen doped carbon quantum dots in an ultrathin 2D-0D-2D all-solid-state Z scheme heterostructure and its performance in tetracycline degradation under LED illumination[J]. Chemical Engineering Journal, 2022, 431: 133914. |
55 | MENG Fanqing, MA Wei, WU Lei, et al. Selective and efficient adsorption of boron (Ⅲ) from water by 3D porous CQDs/LDHs with oxygen-rich functional groups[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 83: 192-203. |
56 | ZHAO Fenfen, RONG Yuefei, WAN Junmin, et al. High photocatalytic performance of carbon quantum dots/TNTs composites for enhanced photogenerated charges separation under visible light[J]. Catalysis Today, 2018, 315: 162-170. |
57 | ZHANG Jinjun, KUANG Meng, WANG Jing, et al. Fabrication of carbon quantum dots/TiO2/Fe2O3 composites and enhancement of photocatalytic activity under visible light[J]. Chemical Physics Letters, 2019, 730: 391-398. |
58 | WANG Shifa, GAO Huajing, FANG Leiming, et al. Synthesis of novel CQDs/CeO2/SrFe12O19 magnetic separation photocatalysts and synergic adsorption-photocatalytic degradation effect for methylene blue dye removal[J]. Chemical Engineering Journal Advances, 2021, 6: 100089. |
59 | SHEN Tao, WANG Qi, GUO Zhaoying, et al. Hydrothermal synthesis of carbon quantum dots using different precursors and their combination with TiO2 for enhanced photocatalytic activity[J]. Ceramics International, 2018, 44(10): 11828-11834. |
60 | CHEN Haoyun, ZHANG Xin, JIANG Longbo, et al. Strategic combination of nitrogen-doped carbon quantum dots and g-C3N4: Efficient photocatalytic peroxydisulfate for the degradation of tetracycline hydrochloride and mechanism insight[J]. Separation and Purification Technology, 2021, 272: 118947. |
61 | LI Yongjie, XIANG Wei, ZHOU Tao, et al. Visible light induced efficient activation of persulfate by a carbon quantum dots (CQDs) modified γ-Fe2O3 catalyst[J]. Chinese Chemical Letters, 2020, 31(10): 2757-2761. |
62 | XIE Yuanhong, LIU Chenrui, LI Dejian, et al. In situ-generated H2O2 with NCQDs/MIL-101(Fe) by activating O2: A dual effect of photocatalysis and photo-Fenton for efficient removal of tetracyline at natural pH[J]. Applied Surface Science, 2022, 592: 153312. |
63 | LI Xuehua, GE Fuxiang, DING Hui, et al. Nitrogen-doped carbon dots as electron “bridge” in heterostructure of alpha-Fe2O3/NCDs/g-C3N4 for efficient degradation of indole using heterogeneous photo-Fenton[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106824. |
64 | WU Pengfei, ZHOU Changli, LI Yanpeng, et al. Flower-like FeOOH hybridized with carbon quantum dots for efficient photo-Fenton degradation of organic pollutants[J]. Applied Surface Science, 2021, 540: 148362. |
65 | ZHANG Ting, WEN Yichan, PAN Zhelun, et al. Overcoming acidic H2O2/Fe(Ⅱ/Ⅲ) redox-induced low H2O2 utilization efficiency by carbon quantum dots Fenton-like catalysis[J]. Environmental Science & Technology, 2022, 56(4): 2617-2625. |
66 | TIAN Dongqi, ZHOU Hongyu, ZHANG Heng, et al. Heterogeneous photocatalyst-driven persulfate activation process under visible light irradiation: From basic catalyst design principles to novel enhancement strategies[J]. Chemical Engineering Journal, 2022, 428: 131166. |
67 | LI Qiansheng, LU Hong, WANG Xiaolei, et al. Visible-light-driven N and Fe co-doped carbon dots for peroxymonosulfate activation and highly efficient aminopyrine photodegradation[J]. Chemical Engineering Journal, 2022, 443: 136473. |
68 | WANG Yongqiang, ZHANG Mengdan, ZHAO Jiamei, et al. In-situ one-step synthesis of porous monolayer carbon nitride nanosheets doped with carbon quantum dots for photocatalytic degradation of Meloxicam[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647: 129042. |
69 | ZHONG Quanfa, LIN Qintie, HUANG Runlin, et al. Oxidative degradation of tetracycline using persulfate activated by N and Cu codoped biochar[J]. Chemical Engineering Journal, 2020, 380: 122608. |
70 | YU Hanbo, HUANG Jinhui, JIANG Longbo, et al. Enhanced photocatalytic tetracycline degradation using N-CQDs/OV-BiOBr composites: Unraveling the complementary effects between N-CQDs and oxygen vacancy[J]. Chemical Engineering Journal, 2020, 402: 126187. |
71 | XIE Pengchao, MA Jun, LIU Wei, et al. Removal of 2-MIB and geosmin using UV/persulfate: Contributions of hydroxyl and sulfate radicals[J]. Water Research, 2015, 69: 223-233. |
72 | LEE Jaesang, VON GUNTEN Urs, KIM Jae Hong. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks[J]. Environmental Science & Technology, 2020, 54(6): 3064-3081. |
73 | REDDYPRASAD Puthalapattu, NAIDOO Eliazer Bobby. Ultrasonic synthesis of high fluorescent C-dots and modified with CuWO4 nanocomposite for effective photocatalytic activity[J]. Journal of Molecular Structure, 2015, 1098: 146-152. |
74 | GHANBARI Farshid, MORADI Mahsa. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J]. Chemical Engineering Journal, 2017, 310: 41-62. |
75 | LIN Liping, LUO Yaxin, TSAI Peiyu, et al. Metal ions doped carbon quantum dots: Synthesis, physicochemical properties, and their applications[J]. TrAC Trends in Analytical Chemistry, 2018, 103: 87-101. |
76 | GAO Yaowen, ZHU Yue, Lai LYU, et al. Electronic structure modulation of graphitic carbon nitride by oxygen doping for enhanced catalytic degradation of organic pollutants through peroxymonosulfate activation[J]. Environmental Science & Technology, 2018, 52(24): 14371-14380. |
77 | ZHANG Jin, YAN Ming, YUAN Xingzhong, et al. Nitrogen doped carbon quantum dots mediated silver phosphate/bismuth vanadate Z-scheme photocatalyst for enhanced antibiotic degradation[J]. Journal of Colloid and Interface Science, 2018, 529: 11-22. |
78 | ESMAEILI Mostafa, WU Zhiqing, CHEN Dechao, et al. Composition and concentration-dependent photoluminescence of nitrogen-doped carbon dots[J]. Advanced Powder Technology, 2022, 33(5): 103560. |
79 | ZHANG Shuaiyang, GAO Mengjie, ZHAI Yunpu, et al. Which kind of nitrogen chemical states doped carbon dots loaded by g-C3N4 is the best for photocatalytic hydrogen production[J]. Journal of Colloid and Interface Science, 2022, 622: 662-674. |
80 | CHEN Guanyi, YU Yang, LIANG Lan, et al. Remediation of antibiotic wastewater by coupled photocatalytic and persulfate oxidation system: A critical review[J]. Journal of Hazardous Materials, 2021, 408: 124461. |
81 | SI Qishi, GUO Wanqian, WANG Huazhe, et al. Difunctional carbon quantum dots/g-C3N4 with in-plane electron buffer for intense tetracycline degradation under visible light: Tight adsorption and smooth electron transfer[J]. Applied Catalysis B: Environmental, 2021, 299: 120694. |
82 | ZOU Yubin, LI Wentao, YANG Lian, et al. Activation of peroxymonosulfate by sp2-hybridized microalgae-derived carbon for ciprofloxacin degradation: Importance of pyrolysis temperature[J]. Chemical Engineering Journal, 2019, 370: 1286-1297. |
83 | WANG Yue, LI Xuefei, LEI Weiwei, et al. Novel carbon quantum dot modified g-C3N4 nanotubes on carbon cloth for efficient degradation of ciprofloxacin[J]. Applied Surface Science, 2021, 559: 149967. |
84 | GAO Yuan, WANG Qing, JI Guozhao, et al. Degradation of antibiotic pollutants by persulfate activated with various carbon materials[J]. Chemical Engineering Journal, 2022, 429: 132387. |
85 | ZHAO Yanyan, LI Zhenyu, WEI Jing, et al. Efficient photodegradation of cefixime catalyzed by a direct Z-scheme CQDs-BiOBr/CN composite: Performance, toxicity evaluation and photocatalytic mechanism[J]. Chemosphere, 2022, 292: 133430. |
86 | CHEN Ping, ZHANG Qianxin, SU Yuehan, et al. Accelerated photocatalytic degradation of diclofenac by a novel CQDs/BiOCOOH hybrid material under visible-light irradiation: Dechloridation, detoxicity, and a new superoxide radical model study[J]. Chemical Engineering Journal, 2018, 332: 737-748. |
87 | FANG Zheng, LIU Yang, CHEN Ping, et al. Insights into CQDs-doped perylene diimide photocatalysts for the degradation of naproxen[J]. Chemical Engineering Journal, 2023, 451: 138571. |
88 | WANG Fengliang, WANG Yingfei, FENG Yiping, et al. Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen[J]. Applied Catalysis B: Environmental, 2018, 221: 510-520. |
89 | WANG Fengliang, CHEN Ping, FENG Yiping, et al. Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin[J]. Applied Catalysis B: Environmental, 2017, 207: 103-113. |
90 | JIANG Runren, LU Guanghua, YAN Zhenhua, et al. Insights into a CQD-SnNb2O6/BiOCl Z-scheme system for the degradation of benzocaine: Influence factors, intermediate toxicity and photocatalytic mechanism[J]. Chemical Engineering Journal, 2019, 374: 79-90. |
91 | ZHAO Yanyan, GUO Hongxia, LIU Jie, et al. Effective photodegradation of rhodamine B and levofloxacin over CQDs modified BiOCl and BiOBr composite: Mechanism and toxicity assessment[J]. Journal of Colloid and Interface Science, 2022, 627: 180-193. |
92 | RANI Umairah Abd, Law Yong NG, Ching Yin NG, et al. Sustainable production of nitrogen-doped carbon quantum dots for photocatalytic degradation of methylene blue and malachite green[J]. Journal of Water Process Engineering, 2021, 40: 101816. |
93 | LI Yong, GAO Zhanqi, JI Yuefei, et al. Photodegradation of malachite green under simulated and natural irradiation: Kinetics, products, and pathways[J]. Journal of Hazardous Materials, 2015, 285: 127-136. |
94 | JACOB Jaya Mary, RAJAN Reju, Malavika AJI, et al. Bio-inspired ZnS quantum dots as efficient photo catalysts for the degradation of methylene blue in aqueous phase[J]. Ceramics International, 2019, 45(4): 4857-4862. |
95 | OZAKI Noriatsu, TANAKA Tatsunori, KINDAICHI Tomonori, et al. Photodegradation of fragrance materials and triclosan in water: Direct photolysis and photosensitized degradation[J]. Environmental Technology & Innovation, 2021, 23: 101766. |
96 | ARIZA-TARAZONA Maria Camila, VILLARREAL-CHIU Juan Francisco, BARBIERI Virginia, et al. New strategy for microplastic degradation: Green photocatalysis using a protein-based porous N-TiO2 semiconductor[J]. Ceramics International, 2019, 45(7): 9618-9624. |
97 | SARAVANAN A, KUMAR P S, JEEVANANTHAM S, et al. Degradation of toxic agrochemicals and pharmaceutical pollutants: Effective and alternative approaches toward photocatalysis[J]. Environmental Pollution, 2022, 298: 118844. |
98 | YANG Cai, LIU Huanhuan, ZHONG Junbo, et al. Carbon quantum dots modified BiOCl for highly efficient degradation of contaminants benefited from effective generation of ·O2 - [J]. Materials Science in Semiconductor Processing, 2021, 136: 106165. |
99 | LAI Jiahao, JIANG Xinyu, ZHAO Min, et al. Thickness-dependent layered BiOIO3 modified with carbon quantum dots for photodegradation of bisphenol A: Mechanism, pathways and DFT calculation[J]. Applied Catalysis B: Environmental, 2021, 298: 120622. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[4] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[5] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[6] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[7] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[8] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[9] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[10] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[11] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[12] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[13] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[14] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[15] | 吴锋振, 刘志炜, 谢文杰, 游雅婷, 赖柔琼, 陈燕丹, 林冠烽, 卢贝丽. 生物质基铁/氮共掺杂多孔炭的制备及其活化过一硫酸盐催化降解罗丹明B[J]. 化工进展, 2023, 42(6): 3292-3301. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |