化工进展 ›› 2023, Vol. 42 ›› Issue (4): 1983-1994.DOI: 10.16085/j.issn.1000-6613.2022-1178
何阳1,2(), 李思盈1, 李传强1, 袁小亚1, 郑旭煦1(
)
收稿日期:
2022-06-23
修回日期:
2022-09-15
出版日期:
2023-04-25
发布日期:
2023-05-08
通讯作者:
郑旭煦
作者简介:
何阳(1997—),男,硕士,研究方向为防腐涂料设计与制备。E-mail:heyang395@outlook.com。
基金资助:
HE Yang1,2(), LI Siying1, LI Chuanqiang1, YUAN Xiaoya1, ZHENG Xuxu1(
)
Received:
2022-06-23
Revised:
2022-09-15
Online:
2023-04-25
Published:
2023-05-08
Contact:
ZHENG Xuxu
摘要:
在市售溶剂型环氧树脂涂料(EPs)中添加少量的热还原氧化石墨烯(TRGO),以提高其防腐性能。本文以氧化石墨(GO)为前体,在不同热还原温度下制备了TRGO,表征了GO热还原反应前后的结构变化,对比了GO和TRGO在环氧树脂涂料稀释剂中的分散性;在Q345钢表面涂覆了TRGO/EPs复合涂层,通过塔菲尔极化曲线(Tafel)、电化学阻抗谱图(EIS)和腐蚀形貌考察了TRGO的制备温度和添加量对复合涂层防腐性能的影响,探讨了复合涂层的防腐机理。结果表明,高温热还原反应能够使GO剥离并成功制备TRGO,与GO相比,TRGO在溶剂型环氧树脂涂料的稀释剂中的分散性得到明显增强;TRGO的氧含量随热还原温度的升高而降低,但800℃下制备的TRGO(TRGO-800)具有最大的比表面积;不同热还原温度下制备的TRGO/EPs复合涂层均比纯EPs涂层具有更好的防腐性能,其中TRGO-800/EPs复合涂层的防腐效果最好,甚至还优于商用石墨烯/EPs复合涂层;当TRGO-800的添加量为0.1%,复合涂层的腐蚀电流密度为3.29×10-8A/cm2,比纯EPs涂层降低了96.84%,极化电阻为1.38×106Ω,比纯EPs涂层增大了28倍。TRGO/EPs复合涂层的防腐性能提升与TRGO的良好分散性和物理阻隔性有关。
中图分类号:
何阳, 李思盈, 李传强, 袁小亚, 郑旭煦. 热还原氧化石墨烯/环氧树脂复合涂层的防腐性能[J]. 化工进展, 2023, 42(4): 1983-1994.
HE Yang, LI Siying, LI Chuanqiang, YUAN Xiaoya, ZHENG Xuxu. Anticorrosion performance of thermal reduction graphene oxide /epoxy resin composite coating[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1983-1994.
试验样品 | C=C/C—C | C—O | C=O | O—C=O |
---|---|---|---|---|
GO | 47.79 | 42.61 | 3.05 | 6.55 |
TRGO-600 | 76.12 | 14.07 | 5.65 | 4.16 |
TRGO-800 | 84.16 | 10.32 | 3.65 | 1.87 |
表1 不同样品C 1s XPS光谱中碳组分的定量分析(原子分数) (%)
试验样品 | C=C/C—C | C—O | C=O | O—C=O |
---|---|---|---|---|
GO | 47.79 | 42.61 | 3.05 | 6.55 |
TRGO-600 | 76.12 | 14.07 | 5.65 | 4.16 |
TRGO-800 | 84.16 | 10.32 | 3.65 | 1.87 |
试验样品 | 比表面积/m2·g–1 | 平均孔径/nm |
---|---|---|
GO | 51.29 | 4.639 |
TRGO-600 | 307.14 | 11.557 |
TRGO-800 | 465.96 | 11.872 |
TRGO-1000 | 431.86 | 11.964 |
表2 TRGO、GO的比表面积和平均孔径
试验样品 | 比表面积/m2·g–1 | 平均孔径/nm |
---|---|---|
GO | 51.29 | 4.639 |
TRGO-600 | 307.14 | 11.557 |
TRGO-800 | 465.96 | 11.872 |
TRGO-1000 | 431.86 | 11.964 |
试验样品 | Ecorr/V | Icorr/A·cm–2 | Rp/Ω | P/% |
---|---|---|---|---|
Bare | –0.659 | 7.06×10–5 | 8.63×102 | — |
EPs | –0.547 | 8.493×10–7 | 4.93×104 | 98.80 |
Gr/EPs | –0.431 | 4.69×10–7 | 1.01×105 | 99.34 |
TRGO-600/EPs | –0.463 | 6.15×10–7 | 7.20×104 | 99.13 |
TRGO-800/EPs | –0.375 | 3.41×10–7 | 1.26×105 | 99.52 |
TRGO-1000/EPs | –0.474 | 7.84 ×10–7 | 4.80×104 | 98.89 |
表3 各种涂层在质量分数3.5%NaCl溶液中浸泡48h后的极化曲线参数
试验样品 | Ecorr/V | Icorr/A·cm–2 | Rp/Ω | P/% |
---|---|---|---|---|
Bare | –0.659 | 7.06×10–5 | 8.63×102 | — |
EPs | –0.547 | 8.493×10–7 | 4.93×104 | 98.80 |
Gr/EPs | –0.431 | 4.69×10–7 | 1.01×105 | 99.34 |
TRGO-600/EPs | –0.463 | 6.15×10–7 | 7.20×104 | 99.13 |
TRGO-800/EPs | –0.375 | 3.41×10–7 | 1.26×105 | 99.52 |
TRGO-1000/EPs | –0.474 | 7.84 ×10–7 | 4.80×104 | 98.89 |
浸泡时间/d | Rs/Ω | CPE-T | CPE-P | Rc/Ω·cm2 | |Z|(0.1Hz)/Ω·cm2 |
---|---|---|---|---|---|
2 | 110 | 4.591×10–8 | 0.6807 | 4.0292×106 | 3.6063×106 |
4 | 113 | 3.6051×10–7 | 0.7105 | 2.5475×106 | 1.8435×106 |
6 | 116 | 2.6359×10–7 | 0.6928 | 1.7997×106 | 1.4586×106 |
8 | 112 | 1.4536×10–7 | 0.7100 | 1.3049×106 | 1.2006×106 |
10 | 123 | 2.6691×10–7 | 0.6904 | 1.1973×106 | 1.0041×106 |
表4 复合涂层在质量分数3.5%的NaCl溶液中浸泡不同时间的等效电路拟合
浸泡时间/d | Rs/Ω | CPE-T | CPE-P | Rc/Ω·cm2 | |Z|(0.1Hz)/Ω·cm2 |
---|---|---|---|---|---|
2 | 110 | 4.591×10–8 | 0.6807 | 4.0292×106 | 3.6063×106 |
4 | 113 | 3.6051×10–7 | 0.7105 | 2.5475×106 | 1.8435×106 |
6 | 116 | 2.6359×10–7 | 0.6928 | 1.7997×106 | 1.4586×106 |
8 | 112 | 1.4536×10–7 | 0.7100 | 1.3049×106 | 1.2006×106 |
10 | 123 | 2.6691×10–7 | 0.6904 | 1.1973×106 | 1.0041×106 |
1 | 张治财, 齐福刚, 赵镍, 等. 环氧树脂防腐涂料的研究进展及发展趋势[J]. 功能材料, 2021, 52(6): 6069-6075. |
ZHANG Zhicai, QI Fugang, ZHAO Nie, et al. Research progress and development trend of epoxy resin anticorrosive coatings[J]. Journal of Functional Materials, 2021, 52(6): 6069-6075. | |
2 | 郝松松, 孙晓峰, 宋巍, 等. 石墨烯改性环氧树脂涂层的制备及其性能[J]. 中国表面工程, 2018, 31(3): 108-115. |
HAO Songsong, SUN Xiaofeng, SONG Wei, et al. Preparation and properties of graphene modified epoxy resin coating[J]. China Surface Engineering, 2018, 31(3): 108-115. | |
3 | 翟倩楠, 冯树波. 氧化石墨烯的制备、结构控制与应用[J]. 化工进展, 2020, 39(10): 4061-4072. |
ZHAI Qiannan, FENG Shubo. Preparation, structure control and application of graphene oxide[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4061-4072. | |
4 | CUI Gan, BI Zhenxiao, ZHANG Ruiyu, et al. A comprehensive review on graphene-based anti-corrosive coatings[J]. Chemical Engineering Journal, 2019, 373: 104-121. |
5 | CHAUHAN D S, QURAISHI M A, ANSARI K R, et al. Graphene and graphene oxide as new class of materials for corrosion control and protection: Present status and future scenario[J]. Progress in Organic Coatings, 2020, 147: 105741. |
6 | 陈志宇, 郭小平, 水晓雪, 等. 苛刻海洋大气腐蚀环境下石墨烯改性重防腐涂料在输电铁塔表面的服役性能评价[J]. 中国表面工程, 2022, 35(2): 24-34. |
CHEN Zhiyu, GUO Xiaoping, SHUI Xiaoxue, et al. Service performance evaluation of graphene modified heavy anticorrosive coating on the surface of transmission tower under harsh marine atmosphere corrosive environment[J]. China Surface Engineering, 2022, 35(2): 24-34. | |
7 | 樊小根, 吴思, 李惠霞, 等. 石墨烯及其衍生物的分散改性及其在防腐涂料中作用机制的研究进展[J]. 复合材料学报, 2021, 38(8): 2383-2395. |
FAN Xiaogen, WU Si, LI Huixia, et al. Research progress of dispersion modification and anticorrosion mechanism of graphene and its derivatives in coatings[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2383-2395. | |
8 | 马骏, 孙冬, 张明爽, 等. 氧化石墨烯改性环氧树脂涂料的制备及防腐性能[J]. 化工进展, 2021, 40(8): 4456-4462. |
MA Jun, SUN Dong, ZHANG Mingshuang, et al. Preparation of graphene oxide modified epoxy resin coating and research on its anti-corrosive performance[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4456-4462. | |
9 | ROZADA R, PAREDES J I, LÓPEZ M J, et al. From graphene oxide to pristine graphene: Revealing the inner workings of the full structural restoration[J]. Nanoscale, 2015, 7(6): 2374-2390. |
10 | 贾营坤, 陈培, 张青红, 等. 高温热还原氧化石墨烯/聚酰亚胺复合涂层的制备及防腐蚀性能研究[J]. 无机材料学报, 2017, 32(12): 1257-1263. |
JIA Yingkun, CHEN Pei, ZHANG Qinghong, et al. Thermal reduced graphene oxide/polyimide nanocomposite coating: Fabrication and anticorrosive property[J]. Journal of Inorganic Materials, 2017, 32(12): 1257-1263. | |
11 | 吴敢敢. 石墨烯(石墨纳米片)/环氧树脂船用涂料防腐性能的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
WU Gangan. Anticorrosion property of graphene (graphite nanosheets)/epoxy marine coating[D]. Harbin: Harbin Institute of Technology, 2015. | |
12 | GAO Xingfa, JANG Joonkyung, NAGASE S. Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design[J]. The Journal of Physical Chemistry C, 2010, 114(2): 832-842. |
13 | LIAO Chenbo, ZHU Xukun, XIE Wei, et al. Solvent-assisted thermal reduction of microcrystalline graphene oxide with excellent microwave absorption performance[J]. RSC Advances, 2018, 8: 15315-15325. |
14 | 袁小亚, 彭一豪, 孙立涛, 等. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080. |
YUAN Xiaoya, PENG Yihao, SUN Litao, et al. Dispersion of thermally reduced graphene oxide in simulated hydrated cement environment and study on performance and mechanism of graphene reinforced mortar[J]. Materials Reports, 2020, 34(6): 6075-6080. | |
15 | DI FILIPPO G, LISCIO A, RUOCCO A. The evolution of hydrogen induced defects and the restoration of π-plasmon as a monitor of the thermal reduction of graphene oxide[J]. Applied Surface Science, 2020, 512: 145605. |
16 | MOHAMMADKHANI R, RAMEZANZADEH M, SAADATMANDI S, et al. Designing a dual-functional epoxy composite system with self-healing/barrier anti-corrosion performance using graphene oxide nano-scale platforms decorated with zinc doped-conductive polypyrrole nanoparticles with great environmental stability and non-toxicity[J]. Chemical Engineering Journal, 2020, 382: 122819. |
17 | LIU Shixiang, YAO Jialu, LIU Qiang, et al. Tuning the physicochemical structure of graphene oxide by thermal reduction temperature for improved stabilization ability toward polymer degradation[J]. The Journal of Physical Chemistry C, 2020, 124(16):8999-9008. |
18 | WANG Tun, GUO Hongchen, CHEN Xinyi, et al. Low-temperature thermal reduction of suspended graphene oxide film for electrical sensing of DNA-hybridization[J]. Materials Science and Engineering:C, 2017, 72: 62-68. |
19 | STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558-1565. |
20 | KIM Ji Hoon, KIM Jimin, LEE Gil Won, et al. Advanced boiling a scalable strategy for self-assembled three-dimensional graphene[J]. ACS Nano, 2021, 15(2): 2839-2848. |
21 | HOU Weixin, GAO Ya, WANG John, et al. Recent advances and future perspectives for graphene oxide reinforced epoxy resins[J]. Materials Today Communications, 2020, 23: 100883. |
22 | 赵明月, 裴晓园, 王维, 等. 二维纳米材料/环氧树脂复合涂层在腐蚀防护中的应用[J]. 复合材料学报, 2022, 39(5): 2049-2059. |
ZHAO Mingyue, PEI Xiaoyuan, WANG Wei, et al. Application of two-dimensional nanomaterial/epoxy composite coating in corrosion protection[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2049-2059. | |
23 | YE Yuwei, CHEN Hao, ZOU Yangjun, et al. Corrosion protective mechanism of smart graphene-based self-healing coating on carbon steel[J]. Corrosion Science, 2020, 174: 108825. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[4] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[5] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[6] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[7] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[8] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[9] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[10] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[11] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[12] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[13] | 刘战剑, 付雨欣, 任丽娜, 张曦光, 袁中涛, 杨楠, 汪怀远. 超疏水涂层在防腐阻垢领域研究进展[J]. 化工进展, 2023, 42(6): 2999-3011. |
[14] | 李瑞东, 黄辉, 同国虎, 王跃社. 原油精馏塔中铵盐吸湿特性及其腐蚀行为[J]. 化工进展, 2023, 42(6): 2809-2818. |
[15] | 张鹏, 潘原. 单原子催化剂在电催化氧还原直接合成过氧化氢中的研究进展[J]. 化工进展, 2023, 42(6): 2944-2953. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 100
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 244
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |