1 |
张治财, 齐福刚, 赵镍, 等. 环氧树脂防腐涂料的研究进展及发展趋势[J]. 功能材料, 2021, 52(6): 6069-6075.
|
|
ZHANG Zhicai, QI Fugang, ZHAO Nie, et al. Research progress and development trend of epoxy resin anticorrosive coatings[J]. Journal of Functional Materials, 2021, 52(6): 6069-6075.
|
2 |
郝松松, 孙晓峰, 宋巍, 等. 石墨烯改性环氧树脂涂层的制备及其性能[J]. 中国表面工程, 2018, 31(3): 108-115.
|
|
HAO Songsong, SUN Xiaofeng, SONG Wei, et al. Preparation and properties of graphene modified epoxy resin coating[J]. China Surface Engineering, 2018, 31(3): 108-115.
|
3 |
翟倩楠, 冯树波. 氧化石墨烯的制备、结构控制与应用[J]. 化工进展, 2020, 39(10): 4061-4072.
|
|
ZHAI Qiannan, FENG Shubo. Preparation, structure control and application of graphene oxide[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4061-4072.
|
4 |
CUI Gan, BI Zhenxiao, ZHANG Ruiyu, et al. A comprehensive review on graphene-based anti-corrosive coatings[J]. Chemical Engineering Journal, 2019, 373: 104-121.
|
5 |
CHAUHAN D S, QURAISHI M A, ANSARI K R, et al. Graphene and graphene oxide as new class of materials for corrosion control and protection: Present status and future scenario[J]. Progress in Organic Coatings, 2020, 147: 105741.
|
6 |
陈志宇, 郭小平, 水晓雪, 等. 苛刻海洋大气腐蚀环境下石墨烯改性重防腐涂料在输电铁塔表面的服役性能评价[J]. 中国表面工程, 2022, 35(2): 24-34.
|
|
CHEN Zhiyu, GUO Xiaoping, SHUI Xiaoxue, et al. Service performance evaluation of graphene modified heavy anticorrosive coating on the surface of transmission tower under harsh marine atmosphere corrosive environment[J]. China Surface Engineering, 2022, 35(2): 24-34.
|
7 |
樊小根, 吴思, 李惠霞, 等. 石墨烯及其衍生物的分散改性及其在防腐涂料中作用机制的研究进展[J]. 复合材料学报, 2021, 38(8): 2383-2395.
|
|
FAN Xiaogen, WU Si, LI Huixia, et al. Research progress of dispersion modification and anticorrosion mechanism of graphene and its derivatives in coatings[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2383-2395.
|
8 |
马骏, 孙冬, 张明爽, 等. 氧化石墨烯改性环氧树脂涂料的制备及防腐性能[J]. 化工进展, 2021, 40(8): 4456-4462.
|
|
MA Jun, SUN Dong, ZHANG Mingshuang, et al. Preparation of graphene oxide modified epoxy resin coating and research on its anti-corrosive performance[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4456-4462.
|
9 |
ROZADA R, PAREDES J I, LÓPEZ M J, et al. From graphene oxide to pristine graphene: Revealing the inner workings of the full structural restoration[J]. Nanoscale, 2015, 7(6): 2374-2390.
|
10 |
贾营坤, 陈培, 张青红, 等. 高温热还原氧化石墨烯/聚酰亚胺复合涂层的制备及防腐蚀性能研究[J]. 无机材料学报, 2017, 32(12): 1257-1263.
|
|
JIA Yingkun, CHEN Pei, ZHANG Qinghong, et al. Thermal reduced graphene oxide/polyimide nanocomposite coating: Fabrication and anticorrosive property[J]. Journal of Inorganic Materials, 2017, 32(12): 1257-1263.
|
11 |
吴敢敢. 石墨烯(石墨纳米片)/环氧树脂船用涂料防腐性能的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
|
|
WU Gangan. Anticorrosion property of graphene (graphite nanosheets)/epoxy marine coating[D]. Harbin: Harbin Institute of Technology, 2015.
|
12 |
GAO Xingfa, JANG Joonkyung, NAGASE S. Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design[J]. The Journal of Physical Chemistry C, 2010, 114(2): 832-842.
|
13 |
LIAO Chenbo, ZHU Xukun, XIE Wei, et al. Solvent-assisted thermal reduction of microcrystalline graphene oxide with excellent microwave absorption performance[J]. RSC Advances, 2018, 8: 15315-15325.
|
14 |
袁小亚, 彭一豪, 孙立涛, 等. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
|
|
YUAN Xiaoya, PENG Yihao, SUN Litao, et al. Dispersion of thermally reduced graphene oxide in simulated hydrated cement environment and study on performance and mechanism of graphene reinforced mortar[J]. Materials Reports, 2020, 34(6): 6075-6080.
|
15 |
DI FILIPPO G, LISCIO A, RUOCCO A. The evolution of hydrogen induced defects and the restoration of π-plasmon as a monitor of the thermal reduction of graphene oxide[J]. Applied Surface Science, 2020, 512: 145605.
|
16 |
MOHAMMADKHANI R, RAMEZANZADEH M, SAADATMANDI S, et al. Designing a dual-functional epoxy composite system with self-healing/barrier anti-corrosion performance using graphene oxide nano-scale platforms decorated with zinc doped-conductive polypyrrole nanoparticles with great environmental stability and non-toxicity[J]. Chemical Engineering Journal, 2020, 382: 122819.
|
17 |
LIU Shixiang, YAO Jialu, LIU Qiang, et al. Tuning the physicochemical structure of graphene oxide by thermal reduction temperature for improved stabilization ability toward polymer degradation[J]. The Journal of Physical Chemistry C, 2020, 124(16):8999-9008.
|
18 |
WANG Tun, GUO Hongchen, CHEN Xinyi, et al. Low-temperature thermal reduction of suspended graphene oxide film for electrical sensing of DNA-hybridization[J]. Materials Science and Engineering:C, 2017, 72: 62-68.
|
19 |
STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558-1565.
|
20 |
KIM Ji Hoon, KIM Jimin, LEE Gil Won, et al. Advanced boiling a scalable strategy for self-assembled three-dimensional graphene[J]. ACS Nano, 2021, 15(2): 2839-2848.
|
21 |
HOU Weixin, GAO Ya, WANG John, et al. Recent advances and future perspectives for graphene oxide reinforced epoxy resins[J]. Materials Today Communications, 2020, 23: 100883.
|
22 |
赵明月, 裴晓园, 王维, 等. 二维纳米材料/环氧树脂复合涂层在腐蚀防护中的应用[J]. 复合材料学报, 2022, 39(5): 2049-2059.
|
|
ZHAO Mingyue, PEI Xiaoyuan, WANG Wei, et al. Application of two-dimensional nanomaterial/epoxy composite coating in corrosion protection[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2049-2059.
|
23 |
YE Yuwei, CHEN Hao, ZOU Yangjun, et al. Corrosion protective mechanism of smart graphene-based self-healing coating on carbon steel[J]. Corrosion Science, 2020, 174: 108825.
|