化工进展 ›› 2023, Vol. 42 ›› Issue (3): 1257-1269.DOI: 10.16085/j.issn.1000-6613.2022-0915
收稿日期:
2022-05-17
修回日期:
2022-07-13
出版日期:
2023-03-15
发布日期:
2023-04-10
通讯作者:
王锐
作者简介:
张巍(1982—),男,工程师,研究方向为能源电力。E-mail:wei.zhang@chnenergy.com.cn。
ZHANG Wei1(), WANG Rui2(), MIAO Ping2, TIAN Ge3
Received:
2022-05-17
Revised:
2022-07-13
Online:
2023-03-15
Published:
2023-04-10
Contact:
WANG Rui
摘要:
电转甲烷技术(PtM)是将可再生能源电力转变为氢气后,再与CO2进行甲烷化制取可再生天然气的过程,是可再生能源制天然气、电网平衡、长时储能与脱碳技术相耦合的综合能源系统关键技术。本文综述了全球典型的电转甲烷储能示范项目及其进展,详细分析了所采用的CO2甲烷化工艺技术,总结了不同类型的甲烷化反应器工艺的设计特点,包括项目规模、工艺路线、操作条件和反应性能等。最后对比分析了化学甲烷化和生物甲烷化两种技术路线的特点,包括反应器体积、杂质要求、动态响应等,以期为今后我国电转甲烷技术的开发和示范应用提供有价值的参考。
中图分类号:
张巍, 王锐, 缪平, 田戈. 全球可再生能源电转甲烷的应用[J]. 化工进展, 2023, 42(3): 1257-1269.
ZHANG Wei, WANG Rui, MIAO Ping, TIAN Ge. Application research progress of renewable power-to-methane[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1257-1269.
类型 | CO2来源 | 排放气体CO2体积分数/% |
---|---|---|
生物质转化 | 生物质发酵 | 15~50 |
沼气提纯 | ≈100 | |
生物乙醇生产 | ≈100 | |
发电厂 | 天然气电厂 | 3~5 |
燃煤电厂 | 10~15 | |
工业过程 | 水泥厂 | 14~33 |
钢铁厂 | 20~30 | |
环氧乙烷 | ≈100 | |
环境 | 环境空气 | ≈0.04 |
富碳天然气 | 南海地区富碳天然气开采 | 普遍为15%~80% |
表1 典型碳源CO2含量
类型 | CO2来源 | 排放气体CO2体积分数/% |
---|---|---|
生物质转化 | 生物质发酵 | 15~50 |
沼气提纯 | ≈100 | |
生物乙醇生产 | ≈100 | |
发电厂 | 天然气电厂 | 3~5 |
燃煤电厂 | 10~15 | |
工业过程 | 水泥厂 | 14~33 |
钢铁厂 | 20~30 | |
环氧乙烷 | ≈100 | |
环境 | 环境空气 | ≈0.04 |
富碳天然气 | 南海地区富碳天然气开采 | 普遍为15%~80% |
通道数 | 总流量/m3·h-1 | SNG产量/m3·h-1 |
---|---|---|
400 | 2.6 | 0.5 |
4000 | 26 | 5 |
8000 | 52 | 10 |
表2 不同产能反应器的参数[56]
通道数 | 总流量/m3·h-1 | SNG产量/m3·h-1 |
---|---|---|
400 | 2.6 | 0.5 |
4000 | 26 | 5 |
8000 | 52 | 10 |
项目名称 | 总进料量 /m3·h-1 | 反应器体积 /m3 |
---|---|---|
Store & Go Falkenhagen化学甲烷化[ | 262.5 | 0.525 |
P2G-BioCat生物甲烷化[ | 250 | 5 |
Store & Go Solothurn生物甲烷化[ | 150 | 5 |
ZSW 250kW β工厂化学甲烷化[ | 68.75 | 0.05(催化剂体积) |
BioPower2Gas 生物甲烷化[ | 75 | 5 |
表3 基于示范项目的生物甲烷化和化学甲烷化反应器体积对比
项目名称 | 总进料量 /m3·h-1 | 反应器体积 /m3 |
---|---|---|
Store & Go Falkenhagen化学甲烷化[ | 262.5 | 0.525 |
P2G-BioCat生物甲烷化[ | 250 | 5 |
Store & Go Solothurn生物甲烷化[ | 150 | 5 |
ZSW 250kW β工厂化学甲烷化[ | 68.75 | 0.05(催化剂体积) |
BioPower2Gas 生物甲烷化[ | 75 | 5 |
项目 | 目前情景 | 2030年情景 |
---|---|---|
甲烷产能/t·a-1 | 85917.91 (1.2×108m3) | 85917.91 (1.2×108m3) |
风光耦合离网电价/CNY·kWh-1 | 0.189 | 0.15 |
电解水投资成本/CNY·kW-1 | 2500.00 | 1800.00 |
电解水年运行时间/h | 4816.82 | 4816.82 |
盐穴储氢容量/m3 | 608410.00 | 608410.00 |
碳捕集投资成本/CNY·t-1·a-1 | 400.00 | 250.00 |
甲烷化装置投资成本/CNY·t-1·a-1 | 5061.00 | 2226.00 |
甲烷生产成本/CNY·m-3 | 5.84 | 4.54 |
表4 电转甲烷的经济性核算
项目 | 目前情景 | 2030年情景 |
---|---|---|
甲烷产能/t·a-1 | 85917.91 (1.2×108m3) | 85917.91 (1.2×108m3) |
风光耦合离网电价/CNY·kWh-1 | 0.189 | 0.15 |
电解水投资成本/CNY·kW-1 | 2500.00 | 1800.00 |
电解水年运行时间/h | 4816.82 | 4816.82 |
盐穴储氢容量/m3 | 608410.00 | 608410.00 |
碳捕集投资成本/CNY·t-1·a-1 | 400.00 | 250.00 |
甲烷化装置投资成本/CNY·t-1·a-1 | 5061.00 | 2226.00 |
甲烷生产成本/CNY·m-3 | 5.84 | 4.54 |
合成工艺 | 原料成本 | 天然气生产成本 /CNY·m-3 |
---|---|---|
电转甲烷(2030) | 电价/CNY·kWh-1 | |
0.15 | 4.54 | |
煤制天然气无碳税和CCS | 原料煤价格/CNY·t-1 | |
400 | 2.32 | |
800 | 4.07 | |
1000 | 4.95 | |
考虑碳税 | 碳税/CNY·t-1 | |
100 | 2.8 | |
300 | 3.76 | |
500 | 4.72 | |
考虑CCS | CO2运输距离/km | |
100 | 4.32 | |
300 | 4.45 | |
500 | 4.71 |
表5 电转甲烷和煤制甲烷工艺的经济性对比
合成工艺 | 原料成本 | 天然气生产成本 /CNY·m-3 |
---|---|---|
电转甲烷(2030) | 电价/CNY·kWh-1 | |
0.15 | 4.54 | |
煤制天然气无碳税和CCS | 原料煤价格/CNY·t-1 | |
400 | 2.32 | |
800 | 4.07 | |
1000 | 4.95 | |
考虑碳税 | 碳税/CNY·t-1 | |
100 | 2.8 | |
300 | 3.76 | |
500 | 4.72 | |
考虑CCS | CO2运输距离/km | |
100 | 4.32 | |
300 | 4.45 | |
500 | 4.71 |
1 | 闫存极, 李鑫, 窦立广, 等. 电转甲烷储能技术的研究进展[J]. 电工电能新技术, 2019, 38(9): 42-51. |
YAN Cunji, LI Xin, DOU Liguang, et al. Research progress of power-to-methane energy storage technology[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(9): 42-51. | |
2 | TESKE S, LINS C, HULLIN M, et al. Renewables global futures report: great debates towards 100% renewable energy[R]. Paris: REN21 Secretariat, 2017. |
3 | 尚娟, 鲁仰辉, 郑津洋, 等. 掺氢天然气管道输送研究进展和挑战[J]. 化工进展, 2021, 40(10): 5499-5505. |
SHANG Juan, LU Yanghui, ZHENG Jinyang, et al. Research status-in-situ and key challenges in pipeline transportation of hydrogen-natural gas mixtures[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5499-5505. | |
4 | QUARTON C J, SAMSATLI S. Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling?[J]. Renewable and Sustainable Energy Reviews, 2018, 98: 302-316. |
5 | 宋鹏飞, 单彤文, 李又武, 等. 氢气与二氧化碳甲烷化在现代能源体系中的新应用[J]. 现代化工, 2020, 40(10): 4-9. |
SONG Pengfei, SHAN Tongwen, LI Youwu, et al. Several new application scenarios of methanation between hydrogen and carbon dioxide in modern energy system[J]. Modern Chemical Industry, 2020, 40(10): 4-9. | |
6 | GHAIB Karim, Fatima-Zahrae BEN-FARES. Power-to-Methane: A state-of-the-art review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 433-446. |
7 | 马建力, 李琦, 陈祥荣, 等. 电转气地质储能技术的经济性分析[J]. 工程科学与技术, 2022, 54(1): 117-127. |
MA Jianli, LI Qi, CHEN Xiangrong, et al. Economic analysis of power-to-gas based subsurface energy storage technology[J]. Advanced Engineering Sciences, 2022, 54(1): 117-127. | |
8 | THEMA M, BAUER F, STERNER M. Power-to-Gas: Electrolysis and methanation status review[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 775-787. |
9 | SCHIEBAHN Sebastian, GRUBE Thomas, ROBINIUS Martin, et al. Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany[J]. International Journal of Hydrogen Energy, 2015, 40(12): 4285-4294. |
10 | BAIER Jens, SCHNEIDER Gabriel, HEEL Andre. A cost estimation for CO2 reduction and reuse by methanation from cement industry sources in Switzerland[J]. Frontiers in Energy Research, 2018, 6: 5. |
11 | Tadeusz CHWOŁA, SPIETZ Tomasz, Lucyna WIĘCŁAW-SOLNY, et al. Pilot plant initial results for the methanation process using CO2 from amine scrubbing at the Łaziska power plant in Poland[J]. Fuel, 2020, 263: 116804. |
12 | 张智鹤, 温彦博, 仉景鹏, 等. 燃煤电厂烟气CO2捕集-甲烷化利用工艺流程模拟研究[J]. 热力发电, 2021, 50(1): 87-93. |
ZHANG Zhihe, WEN Yanbo, ZHANG Jingpeng, et al. Simulation study on the process of carbon dioxide capture and methanation utilization of flue gas in coal-fired power plants[J]. Thermal Power Generation, 2021, 50(1): 87-93. | |
13 | OTTO Alexander, ROBINIUS Martin, GRUBE Thomas, et al. Power-to-steel: Reducing CO2 through the integration of renewable energy and hydrogen into the German steel industry[J]. Energies, 2017, 10(4): 451. |
14 | BAENA-MORENO F M, CID-CASTILLO N, ARELLANO-GARCÍA H, et al. Towards emission free steel manufacturing - Exploring the advantages of a CO2 methanation unit to minimize CO2 emissions[J]. Science of the Total Environment, 2021, 781: 146776. |
15 | 许勇, 周卫红, 汪仁. 二氧化碳合成甲烷的进展[J]. 上海化工, 1989, 14(5): 44-46. |
XU Yong, ZHOU Weihong, WANG Ren. Progress in methane synthesis from carbon dioxide[J]. Shanghai Chemical Industry, 1989, 14(5): 44-46. | |
16 | FUJITA Shinichiro, TERUNUMA Hiroyuki, NAKAMURA Masato, et al. Mechanisms of methanation of carbon monoxide and carbon dioxide over nickel[J]. Industrial & Engineering Chemistry Research, 1991, 30(6): 1146-1151. |
17 | 崔凯凯, 周桂林, 谢红梅. 二氧化碳甲烷化催化剂的研究进展[J]. 化工进展, 2015, 34(3): 724-730, 737. |
CUI Kaikai, ZHOU Guilin, XIE Hongmei. Research progress in CO2 methanation catalysts[J]. Chemical Industry and Engineering Progress, 2015, 34(3): 724-730, 737. | |
18 | GÖTZ M. State of the art and perspectives of CO2 methanation process concepts for power-to-gas applications (vortrag) [C]// International Gas Union Research Conference (IGRC). 2014. |
19 | ALARCÓN AVELLÁN A. Catalyst and reactor design for carbon dioxide methanation[D]. Barcelona-Spain: University of Barcelona, 2021. |
20 | 李安学, 李春启, 左玉帮, 等. 合成气甲烷化工艺技术研究进展[J]. 化工进展, 2015, 34(11): 3898-3905. |
LI Anxue, LI Chunqi, ZUO Yubang, et al. Research development syngas methanation technology[J]. Chemical Industry and Engineering Progress, 2015, 34(11): 3898-3905. | |
21 | SPECHT Michael, BRELLOCHS Jochen, FRICK Volkmar, et al. The power to gas process[M]//Synthetic Natural Gas from Coal, Dry Biomass, and Power-to-Gas Applications. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016: 191-220. |
22 | BAILERA Manuel, LISBONA Pilar, ROMEO Luis M, et al. Power to Gas Projects review: Lab, pilot and demo plants for storing renewable energy and CO2 [J]. Renewable and Sustainable Energy Reviews, 2017, 69: 292-312. |
23 | LEHR Manfred, DACHS Josef, EGNER Franz, et al. Shell-and-tube reactor for carrying out catalytic gas phase reactions: US20130287652[P]. 2013-10-31. |
24 | LEHR Manfred, DACHS Josef, EGNER Franz, et al. Shell-and-tube reactor for carrying out catalytic gas phase reactions: US20130287652[P]. 2013-10-31. |
25 | 新一代火力发电基础技术开发/CO 2有效利用技术开发[EB/OL]. . |
26 | Methane synthesis test facility for effective utilization of CO 2 completed and commissioning started for full-scale operation[EB/OL]. . |
27 | 安然. 通过甲烷化开发零排放的船用燃料油[J]. 石油石化绿色低碳, 2020, 5(5): 49. |
AN Ran. Development of zero-emission marine fuel oil by methanation[J]. Green Petroleum & Petrochemicals, 2020, 5(5): 49. | |
28 | Launch methanation verification test in FY2021[EB/OL]. Tokyo Gas Co., Ltd., . |
29 | 宋鹏飞, 侯海龙, 侯建国, 等. 国内外流化床甲烷化技术研究进展[J]. 天然气化工(C1化学与化工), 2017, 42(6): 113-121. |
SONG Pengfei, HOU Hailong, HOU Jianguo, et al. Research progress in fluidized bed methanation technology[J]. Natural Gas Chemical Industry, 2017, 42(6): 113-121. | |
30 | SEEMANN M C, SCHILDHAUER T J, BIOLLAZ Serge M A. Fluidized bed methanation of wood-derived producer gas for the production of synthetic natural gas[J]. Industrial & Engineering Chemistry Research, 2010, 49(15): 7034-7038. |
31 | SUDIRO Maria, BERTUCCO Alberto. Synthetic natural gas (SNG) from coal and biomass: a survey of existing process technologies, open issues and perspectives[M]//Natural Gas. London: IntechOpen, 2010. |
32 | SEIFFER M, RÖNSCH S, SCHMERSAHL R, et al. Bio-SNG- demonstration of the production and utilization of synthetic natural gas (SNG) from solid biofuels D 1.4 Final Project Report[R]. German: German BiomassResearchCentre (DBFZ), 2009. |
33 | Future Mobility-Hydrogen production from excess electricity with use in mobility or re-conversion to electricity [EB/OL]. . |
34 | WITTE Julia, Adelaide CALBRY-MUZYKA, WIESELER Tanja, et al. Demonstrating direct methanation of real biogas in a fluidised bed reactor[J]. Applied Energy, 2019, 240: 359-371. |
35 | SCHILDHAUER Tilman J, Adelaide CALBRY-MUZYKA, WITTE Julia, et al. Producing renewable methane-demonstration of CCU from biomass[C]// 14th Greenhouse Gas Control Technologies Conference Melbourne, 2018. |
36 | Manuel GÖTZ, LEFEBVRE Jonathan, Friedemann MÖRS, et al. Renewable Power-to-Gas: A technological and economic review[J]. Renewable Energy, 2016, 85: 1371-1390. |
37 | LEFEBVRE Jonathan, Manuel GÖTZ, BAJOHR Siegfried, et al. Improvement of three-phase methanation reactor performance for steady-state and transient operation[J]. Fuel Processing Technology, 2015, 132: 83-90. |
38 | Manuel GÖTZ, ORTLOFF Felix, REIMERT Rainer, et al. Evaluation of organic and ionic liquids for three-phase methanation and biogas purification processes[J]. Energy & Fuels, 2013, 27(8): 4705-4716. |
39 | HELD Mathias, SCHOLLENBERGER Dominik, SAUERSCHELL Simon, et al. Power-to-gas: CO2 methanation concepts for SNG production at the engler-bunte-institut[J]. Chemie Ingenieur Technik, 2020, 92(5): 595-602. |
40 | Götz MANUEL, JONATHAN Lefebvre, DOMINIK Schollenberger, et al. Novel methanation concepts for the production of substitute natural gas[J]. International Gas Research Conference Proceedings, 2014, 3: 2313-2320. |
41 | HORN H, KOLB T, DIMOSTHENIS T, et al. Engler-bunte-institut des Karlsruher instituts für technologie (KIT) im jahre 2018; DVGW-forschungsstelle am EBI, forschungsstelle für brandschutztechnik und TZW: DVGW-technologiezentrum wasser, teil 1[J]. GWF Gas+Energie, 2019, 160(6): 78-99. |
42 | Storage of electrical energy from renewable resources in the natural gas grid [M]// BAZZANELLA A, KRÄMER D. Technologies for sustainability and climate protection-chemical processes and use of CO2 . Frankfurt: DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V., 2017. |
43 | LANDGRAF M. Flexible methane production from electricity and bio-mass [EB/OL]. [2014-12-17]. . |
44 | WindGas Falkenhagen: Pioneering Green Gas Production [EB/OL]. [2020-09-01]. . |
45 | SCHLAUTMANN Ruth, Hans BÖHM, ZAUNER Andreas, et al. Renewable power-to-gas: A technical and economic evaluation of three demo sites within the STORE&GO project[J]. Chemie Ingenieur Technik, 2021, 93(4): 568-579. |
46 | EE-Methan from CO 2-Development of a catalytic process for the methanation of CO 2 from industrial sources [EB/OL]. [2015-04-20]. . |
47 | BIEGGER Philipp, KIRCHBACHER Florian, MEDVED Ana, et al. Development of honeycomb methanation catalyst and its application in power to gas systems[J]. Energies, 2018, 11(7): 1679. |
48 | SALBRECHTER K, LEHNER M. Renewable gasfield-a biogas to SNG demo plant [C]// Proceedings of the 16th Minisymposium Verfahrenstechnik and 7th Partikelforum, TU Wien. 2020. |
49 | ALMEIDA Luciano C, SANZ Oihane, Jorge D’OLHABERRIAGUE, et al. Microchannel reactor for Fischer-Tropsch synthesis: Adaptation of a commercial unit for testing microchannel blocks[J]. Fuel, 2013, 110: 171-177. |
50 | ENGELBRECHT Nicolaas, CHIUTA Steven, EVERSON Raymond C, et al. Experimentation and CFD modelling of a microchannel reactor for carbon dioxide methanation[J]. Chemical Engineering Journal, 2017, 313: 847-857. |
51 | DITTMEYER R, BOELTKEN T, PIERMARTINI P, et al. Micro and micro membrane reactors for advanced applications in chemical energy conversion[J]. Current Opinion in Chemical Engineering, 2017, 17: 108-125. |
52 | Lioubov KIWI-MINSKER, RENKEN Albert. Microstructured reactors for catalytic reactions[J]. Catalysis Today, 2005, 110(1/2): 2-14. |
53 | PÉREZ S, DEL MOLINO E, BARRIO V L. Modeling and testing of a milli-structured reactor for carbon dioxide methanation[J]. International Journal of Chemical Reactor Engineering, 2019, 17(11): 20180238. |
54 | NEUBERT Michael, HAUSER Alexander, POURHOSSEIN Babak, et al. Experimental evaluation of a heat pipe cooled structured reactor as part of a two-stage catalytic methanation process in power-to-gas applications[J]. Applied Energy, 2018, 229: 289-298. |
55 | PFEIFER Peter, PIERMARTINI Paolo, WENKA Achim. Microstructure reactor for carrying out exothermic heterogenously- catalysed reactions with efficient evaporative cooling: US20180207607[P]. 2018-07-26. |
56 | SUSANA Pérez, ARAGÓN Jorge J, Peciña IÑIGO, et al. Enhanced CO2 methanation by new microstructured reactor concept and design[J]. Topics in Catalysis, 2019, 62(5): 518-523. |
57 | GUILERA Jordi, ANDREU Teresa, Núria BASSET, et al. Synthetic natural gas production from biogas in a waste water treatment plant[J]. Renewable Energy, 2020, 146: 1301-1308. |
58 | McPhy hydrogen tech for Jupiter 1000 P2G demo project in France[J]. Fuel Cells Bulletin, 2018, 2018(1): 10. |
59 | LANA J A. Renovagas enagas session 2 [EB/OL]. Zaragoza: Elyntegration Workshop Zaragoza. [2017-11-08]. . |
60 | DUCHAMP J. Design and optimization of special structure heat exchanger for regeneration and energy storage of carbon dioxide hydrogenation to synthetic methane[D]. Strasbourg: University of Strasbourg, 2015. |
61 | First power-to-gas demonstrator unit now operational [EB/OL]. [2018-12-18]. . |
62 | Jupiter 1000 project [EB/OL]. . |
63 | BELIMOV Michael, METZGER David, PFEIFER Peter. On the temperature control in a microstructured packed bed reactor for methanation of CO/CO2 mixtures[J]. AIChE Journal, 2017, 63(1): 120-129. |
64 | 郝文川. H2/CO2生物甲烷化进程研究[D]. 北京: 中国石油大学(北京), 2018. |
HAO Wenchuan. Study on H2/CO2 biological methanation process[D]. Beijing: China University of Petroleum (Beijing), 2018. | |
65 | THEMA Martin, WEIDLICH Tobias, Manuel HÖRL, et al. Biological CO2-methanation: An approach to standardization[J]. Energies, 2019, 12(9): 1670. |
66 | Electrochaea GmBH [EB/OL]. . |
67 | ISKOV H, RASMUSSEN N B. Global screening of projects and technologies for Power-to-Gas and Bio-SNG[R]. Hørsholm: Danish Gas Technology Centre, 2013. |
68 | Denmark turns excess wind power into gas via hydrogenics tech[J]. Fuel Cells Bulletin, 2014, 2014(3): 8-9. |
69 | LARDON L, THORBERG D, KROSGAARD L. WP3-Biogas valorization and efficient energy management D 3.2: Technical and economic analysis of biological methanation[R]. Avedøre: POWERSTEP Project, 2015. http://www.powerstep.eu/system/files/generated/files/resource/d3-2-technical-and-economic-analysis-of-biological-methanationdeliverable.pdf. |
70 | RUSMANIS Davis, Richard O’SHEA, WALL David M, et al. Biological hydrogen methanation systems - an overview of design and efficiency[J]. Bioengineered, 2019, 10(1): 604-634. |
71 | Munich-based clean-tech startup Electrochaea and Hungarian utility MVM establish power-to-gas joint venture[EB/OL]. [2016-10-24]. . |
72 | Electrochaea realisiert power-to-gas- anlage für ein nachhaltiges pfaffenhofen [EB/OL]. [2017-11-13]. . |
73 | BARGIACCHI Eleonora. Power-to-Fuel existing plants and pilot projects[M]//Power to Fuel. Amsterdam: Elsevier, 2021: 211-237. |
74 | SoCalGas和Electrochaea宣布启动新的生物甲烷化反应器系统试点项目[J]. 精细石油化工进展, 2019, 20(5): 58. |
SoCalGas and Electrochaea announced the launch of a new pilot project of biomimetic reactor system[J]. Advances in Fine Petrochemicals, 2019, 20(5): 58. | |
75 | REUTER M. Power-to-gas als schlüsseltechnologie zum gelingen der energiewende[J]. GWF - Gas+Energie. 2015, 156(10): 754-758. |
76 | Bioenergy Task IEA 37 - Biological methanation demonstration plant in Allendorf Germany -An Upgrading Facility For Biogas[EB/OL]. . |
77 | WEGENER KOFOED Michael Vedel, JENSEN Mads Borgbjerg, MØRCK OTTOSEN Lars Ditlev. Biological upgrading of biogas through CO2 conversion to CH4 [M]//Emerging Technologies and Biological Systems for Biogas Upgrading. Amsterdam: Elsevier, 2021: 321-362. |
78 | La méthanation biologique à échelle industrielle [EB/OL]. [2020-02-25]. . |
79 | BOECKH M. Auf der Suche nach einem sinnvollen Speicher führt kein Weg an Biogas vorbei: Mit Power zum Gas[EB/OL]. [2019-10-16]. . |
80 | Biomethane for the Gas Grid of Municipal Utility Companies[EB/OL]. [2016-12]. . |
81 | Biorefinery at Pirmasens-Winzeln Energy Park [EB/OL]. . |
82 | PFI technology. (BGA-PtG)2 [EB/OL]. . |
83 | ALITALO Anni, AURA Erkki. Means and methods for methane production: US20150099286[P]. 2015-04-09. |
84 | Power and St Q 1 piloting synthetic fuel production from biorefinery carbon dioxide[EB/OL]. [2019-08-27]. . |
85 | Finland’s largest Power-to-Gas plant - Wärtsilä and Vantaa Energy to continue planning towards an investment decision[EB/OL]. [2021-06-15]. . |
86 | GRAF Frank, KRAJETE Alexander, SCHMACK Ulrich, et al. Techno-ökonomische Studie zur biologischen Methanisierung bei PtG-Konzepten[R]. Bonn: DVGW-Forschungsstelle am Engler-Bunte-Institut (DVGW-EBI) NO. G 3/01/13., 2014. |
87 | HANK Christoph, STERNBERG Andre, KOEPPEL Nikolas, et al. Energy efficiency and economic assessment of imported energy carriers based on renewable electricity[J]. Sustainable Energy & Fuels, 2020, 4(5): 2256-2273. |
88 | 付国忠, 陈超. 我国天然气供需现状及煤制天然气工艺技术和经济性分析[J]. 中外能源, 2010, 15(6): 28-34. |
FU Guozhong, CHEN Chao. NG demand and supply in China and economic and technical analysis of coal gasification technology[J]. Sino-Global Energy, 2010, 15(6): 28-34. | |
89 | 中国CCUS示范项目 整体规模较小成本较高[N]. 齐鲁石化报, 2021-11-03(4). |
CCUS Demonstration Projects in China are not well scaled with high cost[N]. Qi Lu Petrochemical Newspaper, 2021-11-03(4). | |
90 | 徐冬, 刘建国, 王立敏, 等. CCUS中CO2运输环节的技术及经济性分析[J]. 国际石油经济, 2021, 29(6): 8-16. |
XU Dong, LIU Jianguo, WANG Limin, et al. Technical and economic analysis on CO2 transportation link in CCUS[J]. International Petroleum Economics, 2021, 29(6): 8-16. | |
91 | 侯建国, 宋鹏飞, 王秀林, 等. 二氧化碳分段甲烷化新工艺[J]. 天然气化工(C1化学与化工), 2017, 42(1): 79-83. |
HOU Jianguo, SONG Pengfei, WANG Xiulin, et al. A novel process for carbon dioxide methanation[J]. Natural Gas Chemical Industry, 2017, 42(1): 79-83. | |
92 | 陈晓云, 赵明, 张玉黎, 等. 流化床反应器中CO2甲烷化过程实验研究[J]. 当代化工, 2021, 50(5): 1026-1029, 1034. |
CHEN Xiaoyun, ZHAO Ming, ZHANG Yuli, et al. Experimental study on CO2 methanation reaction in fluidized bed reactor[J]. Contemporary Chemical Industry, 2021, 50(5): 1026-1029, 1034. | |
93 | JIANG Hao, WU Fan, WANG Yuchang, et al. Characteristics of in situ hydrogen biomethanation at mesophilic and thermophilic temperatures[J]. Bioresource Technology, 2021, 337: 125455. |
94 | LI Yeqing, LIU Yinjun, WANG Ximeng, et al. Biomethanation of syngas at high CO concentration in a continuous mode[J]. Bioresource Technology, 2022, 346: 126407. |
95 | ZHU Xianpu, CHEN Liumeng, CHEN Yichao, et al. Differences of methanogenesis between mesophilic and thermophilic in situ biogas-upgrading systems by hydrogen addition[J]. Journal of Industrial Microbiology & Biotechnology, 2019, 46(11): 1569-1581. |
[1] | 杨鹏威, 于琳竹, 王放放, 蒋昊轩, 赵光金, 李琦, 杜铭哲, 马双忱. 氨储能在新型电力系统的应用前景、挑战及发展[J]. 化工进展, 2023, 42(8): 4432-4446. |
[2] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[3] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[4] | 汪健生, 张辉鹏, 刘雪玲, 傅煜郭, 朱剑啸. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
[5] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[6] | 孙旭东, 赵玉莹, 李诗睿, 王琦, 李晓健, 张博. 我国地方性氢能发展政策的文本量化分析[J]. 化工进展, 2023, 42(7): 3478-3488. |
[7] | 徐玉珍, 蒋达华, 刘景滔, 陈璞. 粉煤灰基相变储能材料的制备及性能[J]. 化工进展, 2023, 42(5): 2595-2605. |
[8] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[9] | 万茂华, 张小红, 安兴业, 龙垠荧, 刘利琴, 管敏, 程正柏, 曹海兵, 刘洪斌. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960. |
[10] | 孙晖, 孟祥海, 魏景海, 周红军, 徐春明. 绿电制氢生产氨的新场景与实践[J]. 化工进展, 2023, 42(2): 1098-1102. |
[11] | 刘丹, 范云洁, 王慧敏, 严政, 李鹏飞, 李家成, 曹雪波. 基于废弃PET的高值化功能性多孔碳材料及其应用进展[J]. 化工进展, 2023, 42(2): 969-984. |
[12] | 田甜, 雷西萍, 于婷, 樊凯, 宋晓琪, 朱航. 碳材料在柔性超级电容器中的研究进展[J]. 化工进展, 2023, 42(2): 884-896. |
[13] | 杨程瑞雪, 黄琪媛, 冉建速, 崔耘通, 王健健. 磷酸修饰二氧化硅负载钯催化剂用于木质素衍生物高效水相低温加氢脱氧[J]. 化工进展, 2023, 42(10): 5179-5190. |
[14] | 刘艳辉, 周明芳, 马铭, 王凯, 谭天伟. 可再生能源驱动的生物催化固定CO2的研究进展[J]. 化工进展, 2023, 42(1): 1-15. |
[15] | 王红霞, 徐婉怡, 张早校. 可再生电力电解制绿色氢能的发展现状与建议[J]. 化工进展, 2022, 41(S1): 118-131. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |