化工进展 ›› 2023, Vol. 42 ›› Issue (2): 944-956.DOI: 10.16085/j.issn.1000-6613.2022-0705
收稿日期:
2022-04-20
修回日期:
2022-08-13
出版日期:
2023-02-25
发布日期:
2023-03-13
通讯作者:
张育新
作者简介:
张育新(1978—),男,博士,教授,博士生导师,研究方向为环保新材料。E-mail:zhangyuxin@cqu.edu.cn。
基金资助:
ZHANG Yuxin1(), WANG Can1, SHU Wenxiang2
Received:
2022-04-20
Revised:
2022-08-13
Online:
2023-02-25
Published:
2023-03-13
Contact:
ZHANG Yuxin
摘要:
随着在2020年提出碳达峰和碳中和目标后,减少碳排放成为我国在生态环境治理上的主要目标。二氧化碳是主要的温室气体,也是碳在空气中的主要存在形式,其在工业上具有原料易于获得、自然条件下存量大等优势。如果能回收利用空气中的二氧化碳,将其通过反应制备成可以再次利用的新物质,不仅可为有效地减少碳排放提供新的思路,也能使二氧化碳得到有效的利用。为了更加深入地研究二氧化碳的还原转化,本文阐述了目前空气中二氧化碳的主要富集方法及其还原转化思路。并根据各个研究对原料二氧化碳浓度的要求及其所采用的研究方法,包括直接转化、电催化、光催化、人工光合作用、酶法等,对近两年的研究进行了梳理和归纳。综述了其制备方法及研究成果,为还原及利用二氧化碳的研究提供进一步的参考。
中图分类号:
张育新, 王灿, 舒文祥. 二氧化碳的还原及其利用研究进展[J]. 化工进展, 2023, 42(2): 944-956.
ZHANG Yuxin, WANG Can, SHU Wenxiang. Research progress of carbon dioxide reduction and utilization[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 944-956.
1 | DINH C T, BURDYNY T, KIBRIA M G, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J]. Science, 2018, 360(6390): 783-787. |
2 | Dieter LÜTHI, LE FLOCH Martine, BEREITER Bernhard, et al. High-resolution carbon dioxide concentration record 650000—800000 years before present[J]. Nature, 2008, 453(7193): 379-382. |
3 | LIANG Jiaojiao, WEI Zengxi, WANG Caiyun, et al. Vacancy-induced sodium-ion storage in N-doped carbon nanofiber@MoS2 nanosheet arrays[J]. Electrochimica Acta, 2018, 285: 301-308. |
4 | GUO Renhao, LIU Ching-Fang, WEI Tzu-Chien, et al. Electrochemical behavior of CO2 reduction on palladium nanoparticles: Dependence of adsorbed CO on electrode potential[J]. Electrochemistry Communications, 2017, 80: 24-28. |
5 | LIU Weiqi, QI Jiawei, BAI Peiyao, et al. Utilizing spatial confinement effect of N atoms in micropores of coal-based metal-free material for efficiently electrochemical reduction of carbon dioxide[J]. Applied Catalysis B: Environmental, 2020, 272: 118974. |
6 | WU Yimin A, MCNULTY Ian, LIU Cong, et al. Author correction: Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol[J]. Nature Energy, 2020, 5(1): 89. |
7 | QIAO Jinli, LIU Yuyu, HONG Feng, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2): 631-675. |
8 | KLANKERMAYER J, LEITNER W. Harnessing renewable energy with CO2 for the chemical value chain: Challenges and opportunities for catalysis[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374(2061): 20150315. |
9 | PERATHONER S, CENTI G. CO2 recycling: A key strategy to introduce green energy in the chemical production chain[J]. ChemSusChem, 2014, 7(5): 1274-1282. |
10 | TING Louisa Rui Lin, Boon Siang YEO. Recent advances in understanding mechanisms for the electrochemical reduction of carbon dioxide[J]. Current Opinion in Electrochemistry, 2018, 8: 126-134. |
11 | WHITE James L, BARUCH Maor F, PANDER III James E, et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes[J]. Chemical Reviews, 2015, 115(23): 12888-12935. |
12 | PAN Binbin, ZHU Xiaorong, WU Yunling, et al. Toward highly selective electrochemical CO2 reduction using metal-free heteroatom-doped carbon[J]. Advanced Science, 2020, 7(16): 2001002. |
13 | PETER Sebastian C. Reduction of CO2 to chemicals and fuels: A solution to global warming and energy crisis[J]. ACS Energy Letters, 2018, 3(7): 1557-1561. |
14 | ZHU Dong dong, LIU Jinlong, QIAO Shizhang. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide[J]. Advanced Materials, 2016, 28(18): 3423-3452. |
15 | KONDRATENKO Evgenii V, Guido MUL, BALTRUSAITIS Jonas, et al. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes[J]. Energy & Environmental Science, 2013, 6(11): 3112-3135. |
16 | GALLO Alessandro, SNIDER Jonathan L, SOKARAS Dimosthenis, et al. Ni5Ga3 catalysts for CO2 reduction to methanol: Exploring the role of Ga surface oxidation/reduction on catalytic activity[J]. Applied Catalysis B: Environmental, 2020, 267: 118369. |
17 | NAHAR S, ZAIN M F M, KADHUM A A H, et al. Advances in photocatalytic CO₂ reduction with water: A review[J]. Materials, 2017, 10(6): 629. |
18 | SILVA Wanderson O, SILVA Gabriel C, WEBSTER Richard F, et al. Electrochemical reduction of CO2 on nitrogen-doped carbon catalysts with and without iron[J]. ChemElectroChem, 2019, 6(17): 4626-4636. |
19 | YANG Hui, HAN Na, DENG Jun, et al. Selective CO2 reduction on 2D mesoporous Bi nanosheets[J]. Advanced Energy Materials, 2018, 8(35): 1801536. |
20 | KIM Cheonghee, Taedaehyeong EOM, Michael Shincheon JEE, et al. Insight into electrochemical CO2 reduction on surface-molecule-mediated Ag nanoparticles[J]. ACS Catalysis, 2017, 7(1): 779-785. |
21 | KUMAR Bijandra, BRIAN Joseph P, ATLA Veerendra, et al. New trends in the development of heterogeneous catalysts for electrochemical CO2 reduction[J]. Catalysis Today, 2016, 270: 19-30. |
22 | ROSEN Jonathan, HUTCHINGS Gregory S, LU Qi, et al. Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction[J]. ACS Catalysis, 2015, 5(8): 4586-4591. |
23 | SOHN Youngku, HUANG Weixin, TAGHIPOUR Fariborz. Recent progress and perspectives in the photocatalytic CO2 reduction of Ti-oxide-based nanomaterials[J]. Applied Surface Science, 2017, 396: 1696-1711. |
24 | RASUL S, ANJUM D H, JEDIDI A, et al. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO[J]. Angewandte Chemie International Edition, 2015, 54(7): 2146-2150. |
25 | CHEN Yihong, KANAN Matthew W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts[J]. Journal of the American Chemical Society, 2012, 134(4): 1986-1989. |
26 | CHEN Yihong, LI Christina W, KANAN Matthew W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles[J]. Journal of the American Chemical Society, 2012, 134(49): 19969-19972. |
27 | LEE Chang Hoon, KANAN Matthew W. Controlling H+ vs. CO2 reduction selectivity on Pb electrodes[J]. ACS Catalysis, 2015, 5(1): 465-469. |
28 | LIU Cong, CUNDARI Thomas R, WILSON Angela K. CO2 reduction on transition metal (Fe, Co, Ni, and Cu) surfaces: In comparison with homogeneous catalysis[J]. The Journal of Physical Chemistry C, 2012, 116(9): 5681-5688. |
29 | 桂霞, 王陈魏, 云志, 等. 燃烧前CO2捕集技术研究进展[J]. 化工进展, 2014, 33(7): 1895-1901. |
GUI Xia, WANG Chenwei, YUN Zhi, et al. Research progress of pre-combustion CO2 capture[J]. Chemical Industry and Engineering Progress, 2014, 33(7): 1895-1901. | |
30 | 李新春, 孙永斌. 二氧化碳捕集现状和展望[J]. 能源技术经济, 2010, 22(4): 21-26. |
LI Xinchun, SUN Yongbin. Status quo and prospect of the carbon dioxide capture[J]. Energy Technology and Economics, 2010, 22(4): 21-26. | |
31 | 费维扬, 艾宁, 陈健. 温室气体CO2的捕集和分离——分离技术面临的挑战与机遇[J]. 化工进展, 2005, 24(1): 1-4. |
FEI Weiyang, AI Ning, CHEN Jian. Capture and separation of greenhouse gases CO2—The challengeand opportunity for separation technology[J]. Chemical Industry and Engineering Progress, 2005, 24(1): 1-4. | |
32 | 徐永辉, 肖宝华, 冯艳艳, 等. 二氧化碳捕集材料的研究进展[J]. 精细化工, 2021, 38(8): 1513-1521. |
XU Yonghui, XIAO Baohua, FENG Yanyan, et al. Research progress of carbon dioxide capture materials[J]. Fine Chemicals, 2021, 38(8): 1513-1521. | |
33 | 张锁江, 周清, 吕兴梅, 等. 二氧化碳的捕集分离与减排技术[C]//第十届中国科协年会第18分会二氧化碳减排和绿色化利用与发展研讨会论文集. 郑州, 2008: 42. |
ZHANG Suojiang, ZHOU Qing, Xingmei LYU, et al. Carbon dioxide capture, separation and emission reduction technology[C]// Proceedings of the 10th Annual Meeting of China Association for Science and Technology, The 18th Session of the Symposium on Carbon Dioxide Reduction and Green Utilization and Development. Zhengzhou, 2008: 42. | |
34 | OLHOFF A, NEUFELDT H, NASWA P, et al. The adaptation gap report. towards global assessment[R]. Environmental Science, Corpus ID: 187395260, 2017 |
35 | OZKAN Mihrimah, NAYAK Saswat Priyadarshi, RUIZ Anthony D, et al. Current status and pillars of direct air capture technologies[J]. iScience, 2022, 25(4): 103990. |
36 | ALVES M, GRIGNARD B, MEREAU R, et al. Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates: Catalyst design and mechanistic studies[J]. Catalysis Science & Technology, 2017, 7(13): 2651-2684. |
37 | LAN Donghui, FAN Na, WANG Ying, et al. Recent advances in metal-free catalysts for the synthesis of cyclic carbonates from CO2 and epoxides[J]. Chinese Journal of Catalysis, 2016, 37(6): 826-845. |
38 | LIU Huiling, ZHU Yating, MA Jianmin, et al. Atomically thin catalysts: Recent advances in atomic-level engineering of nanostructured catalysts for electrochemical CO2 reduction[J]. Advanced Functional Materials, 2020, 30(17): 2070107. |
39 | 李亮星. 卤化物——碳酸锂熔盐体系CO2电解制备C和O2 [D]. 沈阳: 东北大学, 2016. |
LI Liangxing. Production of carbon and oxygen from CO2 by electrolysis in halide-lithium carbonate molten salts[D]. Shenyang: Northeastern University, 2016. | |
40 | 吕旺燕, 刘世念, 苏伟, 等. 熔盐电沉积碳材料的研究进展[J]. 材料导报, 2012, 26(S2): 248-251. |
Wangyan LYU, LIU Shinian, SU Wei, et al. Research progresses in the electro-deposition of carbonaceous materials in molten salts[J]. Materials Review, 2012, 26(S2): 248-251. | |
41 | LI Zelong, WANG Jijie, QU Yuanzhi, et al. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catalysis, 2017, 7(12): 8544-8548. |
42 | ZURAIQI Karma, ZAVABETI Ali, Jonathan CLARKE-HANNAFORD, et al. Direct conversion of CO2 to solid carbon by Ga-based liquid metals[J]. Energy & Environmental Science, 2022, 15(2): 595-600. |
43 | NGUYEN Dang Le Tri, KIM Younghye, HWANG Yun Jeong, et al. Progress in development of electrocatalyst for CO2 conversion to selective CO production[J]. Carbon Energy, 2020, 2(1): 72-98. |
44 | PETERSON Andrew A, Frank ABILD-PEDERSEN, STUDT Felix, et al. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels[J]. Energy & Environmental Science, 2010, 3(9): 1311-1315. |
45 | HANSEN Heine A, VARLEY Joel B, PETERSON Andrew A, et al. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO[J]. The Journal of Physical Chemistry Letters, 2013, 4(3): 388-392. |
46 | FEASTER Jeremy T, SHI Chuan, CAVE Etosha R, et al. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes[J]. ACS Catalysis, 2017, 7(7): 4822-4827. |
47 | HORI Yoshio, KIKUCHI Katsuhei, SUZUKI Shin. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution[J]. Chemistry Letters, 1985, 14(11): 1695-1698. |
48 | HORI Yoshio, WAKEBE Hidetoshi, TSUKAMOTO Toshio, et al. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media[J]. Electrochimica Acta, 1994, 39(11/12): 1833-1839. |
49 | HAUCH A, KÜNGAS R, BLENNOW P, et al. Recent advances in solid oxide cell technology for electrolysis[J]. Science, 2020, 370(6513): eaba6118. |
50 | DEKA Dhruba J, GUNDUZ Seval, FITZGERALD Taylor, et al. Production of syngas with controllable H2/CO ratio by high temperature co-electrolysis of CO2 and H2O over Ni and Co-doped lanthanum strontium ferrite perovskite cathodes[J]. Applied Catalysis B: Environmental, 2019, 248: 487-503. |
51 | QI Huiying, ZHANG Junfeng, TU Baofeng, et al. Extreme management strategy and thermodynamic analysis of high temperature H2O/CO2 co-electrolysis for energy conversion[J]. Renewable Energy, 2022, 183: 229-241. |
52 | JEON Hyo Sang, TIMOSHENKO Janis, RETTENMAIER Clara, et al. Selectivity control of Cu nanocrystals in a gas-fed flow cell through CO2 pulsed electroreduction[J]. Journal of the American Chemical Society, 2021, 143(19): 7578-7587. |
53 | LABINGER Jay A. Comment on “Selective anaerobic oxidation of methane enables direct synthesis of methanol”[J]. Science, 2018, 359(6377): eaar4968. |
54 | ZHOU Xianlong, SHAN Jieqiong, CHEN Ling, et al. Stabilizing Cu2+ ions by solid solutions to promote CO2 electroreduction to methane[J]. Journal of the American Chemical Society, 2022, 144(5): 2079-2084. |
55 | 张安. 二维过渡金属纳米片的表面调控用于高效二氧化碳电还原反应[D]. 合肥: 中国科学技术大学, 2021. |
ZHANG An. Surface engineering of two-dimensional transition metal nanosheets for efficient CO2 electroreduction[D]. Hefei: University of Science and Technology of China, 2021. | |
56 | BASTAKOTI Bishnu Prasad, LI Yunqi, IMURA Masataka, et al. Polymeric micelle assembly with inorganic nanosheets for construction of mesoporous architectures with crystallized walls[J]. Angewandte Chemie International Edition, 2015, 54(14): 4222-4225. |
57 | DOUSTKHAH Esmail, LIN Jianjian, ROSTAMNIA Sadegh, et al. Development of sulfonic-acid-functionalized mesoporous materials: Synthesis and catalytic applications[J]. Chemistry, 2019, 25(7): 1614-1635. |
58 | GENG Fengxia, MA Renzhi, Ebina Yasuo, et al. Gigantic swelling of inorganic layered materials: A bridge to molecularly thin two-dimensional nanosheets[J]. Journal of the American Chemical Society, 2014, 136(14): 5491-5500. |
59 | KONNERTH Hannelore, MATSAGAR Babasaheb M, CHEN Season S, et al. Metal-organic framework (MOF)-derived catalysts for fine chemical production[J]. Coordination Chemistry Reviews, 2020, 416: 213319. |
60 | LIAO Yute, NGUYEN Van Chi, ISHIGURO Nozomu, et al. Engineering a homogeneous alloy-oxide interface derived from metal-organic frameworks for selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid[J]. Applied Catalysis B: Environmental, 2020, 270: 118805. |
61 | LIAO Yu-Te, MATSAGAR Babasaheb M, WU K. Metal-organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass[J]. ACS Sustain Chem. Eng., 2018, 6(11): 13628-13643. |
62 | HE Hanbing, LI Ren, YANG Zhihui, et al. Preparation of MOFs and MOFs derived materials and their catalytic application in air pollution: A review[J]. Catalysis Today, 2021, 375: 10-29. |
63 | DONG Jinqiao, HAN Xing, LIU Yan, et al. Metal-covalent organic frameworks (MCOFs): A bridge between metal-organic frameworks and covalent organic frameworks[J]. Angewandte Chemie International Edition, 2020, 59(33): 13722-13733. |
64 | YANG Kun, SUN Qian, XUE Feng, et al. Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: Influence of molecular size and shape[J]. Journal of Hazardous Materials, 2011, 195: 124-131. |
65 | CHEN Dongyao, ZHAO Songjian, QU Zan, et al. Cu-BTC as a novel material for elemental mercury removal from sintering gas[J]. Fuel, 2018, 217: 297-305. |
66 | ZHAO Songjian, MEI Jian, XU Haomiao, et al. Research of mercury removal from sintering flue gas of iron and steel by the open metal site of Mil-101(Cr)[J]. Journal of Hazardous Materials, 2018, 351: 301-307. |
67 | 何超华. 面向电化学CO2还原铜基催化剂的设计及其反应机理研究[D]. 合肥: 中国科学技术大学, 2021. |
HE Chaohua. Rational design and mechanism investigation of copper based CO2 electroreduction catalysts[D]. Hefei: University of Science and Technology of China, 2021. | |
68 | SHENG Jianping, HE Ye, HUANG Ming, et al. Frustrated lewis pair sites boosting CO2 photoreduction on Cs2CuBr4 perovskite quantum dots[J]. ACS Catalysis, 2022, 12(5): 2915-2926. |
69 | BANERJEE Tanmay, HAASE Frederik, TRENKER Stefan, et al. Sub-stoichiometric 2D covalent organic frameworks from tri- and tetratopic linkers[J]. Nature Communications, 2019, 10: 2689. |
70 | XIONG Yifeng, LIAO Qiaobo, HUANG Zhengping, et al. Ultrahigh responsivity photodetectors of 2D covalent organic frameworks integrated on graphene[J]. Advanced Materials, 2020, 32(9): e1907242. |
71 | LIAO Qiaobo, XU Wentao, HUANG Xin, et al. Donor-acceptor type[4+3]covalent organic frameworks: Sub-stoichiometric synthesis and photocatalytic application[J]. Science China Chemistry, 2020, 63(5): 707-714. |
72 | XU Wentao, PEI Xiaokun, DIERCKS Christian S, et al. A metal-organic framework of organic vertices and polyoxometalate linkers as a solid-state electrolyte[J]. Journal of the American Chemical Society, 2019, 141(44): 17522-17526. |
73 | SONG Yufei, MCMILLAN Nicola, LONG Deliang, et al. Micropatterned surfaces with covalently grafted unsymmetrical polyoxometalate-hybrid clusters lead to selective cell adhesion[J]. Journal of the American Chemical Society, 2009, 131(4): 1340-1341. |
74 | LU Meng, ZHANG Mi, LIU Jiang, et al. Confining and highly dispersing single polyoxometalate clusters in covalent organic frameworks by covalent linkages for CO2 photoreduction[J]. Journal of the American Chemical Society, 2022, 144(4): 1861-1871. |
75 | CHANG Xiaoxia, WANG Tuo, ZHAO Zhijian, et al. Tuning Cu/Cu2O interfaces for the reduction of carbon dioxide to methanol in aqueous solutions[J]. Angewandte Chemie International Edition, 2018, 57(47): 15415-15419. |
76 | REZAUL KARIM Kaykobad Md, Huei Ruey ONG, ABDULLAH Hamidah, et al. Photoelectrochemical reduction of carbon dioxide to methanol on p-type CuFe2O4 under visible light irradiation[J]. International Journal of Hydrogen Energy, 2018, 43(39): 18185-18193. |
77 | ZHAO Jiwu, XUE Lan, NIU Zhenjie, et al. Conversion of CO2 to formic acid by integrated all-solar-driven artificial photosynthetic system[J]. Journal of Power Sources, 2021, 512: 230532. |
78 | ZHAO Tingting, FENG Guanghui, CHEN Wei, et al. Artificial bioconversion of carbon dioxide[J]. Chinese Journal of Catalysis, 2019, 40(10): 1421-1437. |
79 | FANG Xin, SOKOL Katarzyna P, Heidary Nina, et al. Structure-activity relationships of hierarchical three-dimensional electrodes with photosystem II for semiartificial photosynthesis[J]. Nano Letters, 2019, 19(3): 1844-1850. |
80 | ROSSER Timothy E, GROSS Manuela A, LAI Yi-Hsuan, et al. Precious-metal free photoelectrochemical water splitting with immobilised molecular Ni and Fe redox catalysts[J]. Chemical Science, 2016, 7(7): 4024-4035. |
81 | COBB Samuel J, BADIANI Vivek M, DHARANI Azim M, et al. Fast CO2 hydration kinetics impair heterogeneous but improve enzymatic CO2 reduction catalysis[J]. Nature Chemistry, 2022, 14(4): 417-424. |
82 | NAJAFPOUR Mohammad Mahdi, MADADKHANI Sepideh, ZAND Zahra, et al. Engineered polypeptide around nano-sized manganese-calcium oxide as an artificial water-oxidizing enzyme mimicking natural photosynthesis: Toward artificial enzymes with highly active site densities[J]. International Journal of Hydrogen Energy, 2016, 41(40): 17826-17836. |
83 | LIU Yang, CHEN Yong, GAO Zirui, et al. Embedding high loading and uniform Ni nanoparticles into silicalite-1 zeolite for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2022, 307: 121202. |
84 | KIM Soong, Byeong CHA, SAQLAIN Shahid, et al. Atomic layer deposition for preparation of highly efficient catalysts for dry reforming of methane[J]. Catalysts, 2019, 9(3): 266. |
85 | KIM Yikyeom, Hyun Suk LIM, LEE Minbeom, et al. Ni-Fe-Al mixed oxide for combined dry reforming and decomposition of methane with CO2 utilization[J]. Catalysis Today, 2021, 368: 86-95. |
86 | NIU Juntian, GUO Fan, RAN Jingyu, et al. Methane dry (CO2) reforming to syngas (H2/CO) in catalytic process: From experimental study and DFT calculations[J]. International Journal of Hydrogen Energy, 2020, 45(55): 30267-30287. |
87 | WU Zhongshuai, YANG Shubin, SUN Yi, et al. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction[J]. Journal of the American Chemical Society, 2012, 134(22): 9082-9085. |
88 | 仝塞. 石墨烯负载镍基催化剂设计及其催化二氧化碳甲烷化的研究[D]. 南昌: 南昌大学, 2018. |
TONG Sai. Design of graphene-supported nickel-based catalysts and their catalytic performance for the CO2 methanation reaction[D]. Nanchang: Nanchang University, 2018. | |
89 | SUN Haiyan, XU Zhen, GAO Chao. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25(18): 2554-2560. |
90 | BURRESS Jacob W, GADIPELLI Srinivas, FORD Jamie, et al. Graphene oxide framework materials: Theoretical predictions and experimental results[J]. Angewandte Chemie International Edition, 2010, 49(47): 8902-8904. |
91 | ZHU Chengzhou, DONG Shaojun. Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction[J]. Nanoscale, 2013, 5(5): 1753-1767. |
92 | XU J M, CHENG J P. The advances of Co3O4 as gas sensing materials: A review[J]. Journal of Alloys and Compounds, 2016, 686: 753-768. |
93 | CHEN L L, ZHANG Z Y, QI N, et al. Giant reduction in thermal conductivity of Co3O4 with ordered mesopore structures[J]. Microporous and Mesoporous Materials, 2020, 296: 109969. |
94 | CHUNG S, REVIA R A, ZHANG M. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy[J]. Advanced Materials, 2021, 33(22): e1904362. |
95 | ZHI Dandan, LI Tian, LI Jinzhe, et al. A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption[J]. Composites Part B: Engineering, 2021, 211: 108642. |
96 | LI Saisai, SUN Jianrui, GUAN Jingqi. Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction[J]. Chinese Journal of Catalysis, 2021, 42(4): 511-556. |
97 | TIAN Yuheng, YU Zhichun, CAO Liuyue, et al. Graphene oxide: An emerging electromaterial for energy storage and conversion[J]. Journal of Energy Chemistry, 2021, 55: 323-344. |
98 | CHAKRABARTI Amartya, LU Jun, SKRABUTENAS Jennifer C, et al. Conversion of carbon dioxide to few-layer graphene[J]. Journal of Materials Chemistry, 2011, 21(26): 9491-9493. |
99 | GONG Peng, TANG Can, WANG Boran, et al. Precise CO2 reduction for bilayer graphene[J]. ACS Central Science, 2022, 8(3): 394-401. |
100 | DONG H Y, GUO S Q, ZHAO L F. Facile preparation of multilayered graphene with CO2 as a carbon source[J]. Applied Sciences, 2019, 9(21): 4482. |
101 | 夏力. 金属配合物对二氧化碳转化为聚碳酸酯的催化作用研究[D]. 西安: 西安石油大学, 2019. |
XIA Li. Catalytic effect of metal complexes on carbon dioxide conversion to polycarbonate[D]. Xi’an: Xi’an Shiyou University, 2019. | |
102 | 樊维. 过渡金属配合物对二氧化碳转化为聚碳酸酯的催化作用研究[D]. 西安: 西安石油大学, 2019. |
FAN Wei. Study on the catalytic effect of transition metal complexes on the conversion of carbon dioxide to polycarbonate[D]. Xi’an: Xi’an Shiyou University, 2019. | |
103 | 韩微莉. 过渡金属配合物催化二氧化碳与环氧化物共聚研究[D]. 西安: 西安石油大学, 2018. |
HAN Weili. Study on the copolymerization of carbon dioxide and epoxide catalyzed by transition metal complexes[D]. Xi’an: Xi’an Shiyou University, 2018. | |
104 | 李想. 二氧化碳与环氧化物聚合[D]. 长春: 东北师范大学, 2015. |
LI Xiang. Copolymerizations of carbon dioxide and epoxides[D]. Changchun: Northeast Normal University, 2015. | |
105 | PADDOCK Robert L, HIYAMA Yaeko, MCKAY Jonathan M, et al. Co(III) porphyrin/DMAP: An efficient catalyst system for the synthesis of cyclic carbonates from CO2 and epoxides[J]. Tetrahedron Letters, 2004, 45(9): 2023-2026. |
106 | HUANG Jie, XU Yunpeng, WANG Meige, et al. Copolymerization of propylene oxide and CO2 catalyzed by dinuclear salcy-CoCl complex[J]. Journal of Macromolecular Science, Part A, 2020, 57(2): 131-138. |
107 | 易敏. 烯烃与二氧化碳直接合成环碳酸酯研究[D]. 杭州: 浙江大学, 2020. |
YI Min. Study on the direct synthesis of cyclic carbonates from olefins and CO2 [D]. Hangzhou: Zhejiang University, 2020. | |
108 | 杨欢, 高国淑, 陈万民, 等. 不对称3d-4f金属螺旋配合物用于催化CO2环加成反应[C]//中国稀土学会2020学术年会暨江西(赣州)稀土资源绿色开发与高效利用大会摘要集. 赣州, 2020: 302. |
YANG Huan, GAO Guoshu, CHEN Wanmin, et al. Asymmetric 3d-4f metal spiral complexes catalyzed CO2 cycloaddition reaction[C]// China Rare Earth Society 2020 Annual Conference and Jiangxi (Ganzhou) Rare Earth Resources Green Development and Efficient Utilization conference. 2020. |
[1] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[2] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[3] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[4] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[5] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[8] | 舒斌, 陈建宏, 熊健, 吴其荣, 喻江涛, 杨平. 碳中和目标下推动绿色甲醇发展的必要性分析[J]. 化工进展, 2023, 42(9): 4471-4478. |
[9] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[10] | 宋伟涛, 宋慧平, 范朕连, 樊飙, 薛芳斌. 粉煤灰在防腐涂料中的研究进展[J]. 化工进展, 2023, 42(9): 4894-4904. |
[11] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[12] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[13] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[14] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[15] | 欧阳素芳, 周道伟, 黄伟, 贾凤. 新型耐迁移橡胶防老剂的研究进展[J]. 化工进展, 2023, 42(7): 3708-3719. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |