1 |
XU Di, YANG Hengquan, HONG Xinlin, et al. Tandem catalysis of direct CO2 hydrogenation to higher alcohols[J]. ACS Catalysis, 2021, 11(15): 8978-8984.
|
2 |
LIANG Ning, ZHANG Xiaolong, AN Hualiang, et al. Direct synthesis of 2-ethylhexanol via n-butanal aldol condensation-hydrogenation reaction integration over a Ni/Ce-Al2O3 bifunctional catalyst[J]. Green Chemistry, 2015, 17(5): 2959-2972.
|
3 |
ATABANI A E, Al KULTHOOM S. Spectral, thermoanalytical characterizations, properties, engine and emission performance of complementary biodiesel-diesel-pentanol/octanol blends[J]. Fuel, 2020, 282: 118849.
|
4 |
GUERBET Marcel. Guerbet reaction[J]. Comptes Rend, 1899, 128: 511.
|
5 |
WU Xianyuan, FANG Geqian, TONG Yuqin, et al. Catalytic upgrading of ethanol to n-butanol: Progress in catalyst development[J]. ChemSusChem, 2018, 11(1): 71-85.
|
6 |
WANG S C, CENDEJAS M C, HERMANS I. Insights into ethanol coupling over hydroxyapatite using modulation excitation operando infrared spectroscopy[J]. ChemCatChem, 2020, 12(16): 4167-4175.
|
7 |
CARVALHO D L, DE AVILLEZ R R, RODRIGUES M T, et al. Mg and Al mixed oxides and the synthesis of n-butanol from ethanol[J]. Applied Catalysis A: General, 2012, 415/416: 96-100.
|
8 |
NDOU A S, PLINT N, COVILLE N J. Dimerisation of ethanol to butanol over solid-base catalysts[J]. Applied Catalysis A: General, 2003, 251(2): 337-345.
|
9 |
TSUCHIDA, SAKUMA S, TAKEGUCHI T, et al. Direct synthesis of n-butanol from ethanol over nonstoichiometric hydroxyapatite[J]. Industrial & Engineering Chemistry Research, 2006, 45(25): 8634-8642.
|
10 |
TSUCHIDA T, KUBO J, YOSHIOKA T, et al. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst[J]. Journal of Catalysis, 2008, 259(2): 183-189.
|
11 |
OGO S, ONDA A, IWASA Y, et al. 1-Butanol synthesis from ethanol over strontium phosphate hydroxyapatite catalysts with various Sr/P ratios[J]. Journal of Catalysis, 2012, 296: 24-30.
|
12 |
MOTEKI T, FLAHERTY D W. Mechanistic insight to C—C bond formation and predictive models for cascade reactions among alcohols on Ca- and Sr-hydroxyapatites[J]. ACS Catalysis, 2016, 6(7): 4170-4183.
|
13 |
HANSPAL S, YOUNG Z D, SHOU H, et al. Multiproduct steady-state isotopic transient kinetic analysis of the ethanol coupling reaction over hydroxyapatite and magnesia[J]. ACS Catalysis, 2015, 5(3): 1737-1746.
|
14 |
HO C R, SHYLESH S, BELL A T. Mechanism and kinetics of ethanol coupling to butanol over hydroxyapatite[J]. ACS Catalysis, 2016, 6(2): 939-948.
|
15 |
WANG Qingnan, ZHOU Baichuan, WENG Xuefei, et al. Hydroxyapatite nanowires rich in [Ca-O-P] sites for ethanol direct coupling showing high C6-12 alcohol yield[J]. Chemical Communications (Cambridge, England), 2019, 55(70): 10420-10423.
|
16 |
BRASIL H, BITTENCOURT A F, YOKOO K C, et al. Synthesis modification of hydroxyapatite surface for ethanol conversion: The role of the acidic/basic sites ratio[J]. Journal of Catalysis, 2021, 404: 802-813.
|
17 |
RAMASAMY K K, GRAY M, JOB H, et al. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds[J]. Catalysis Today, 2016, 269: 82-87.
|
18 |
BENITO P, VACCARI A, ANTONETTI C, et al. Tunable copper-hydrotalcite derived mixed oxides for sustainable ethanol condensation to n-butanol in liquid phase[J]. Journal of Cleaner Production, 2019, 209: 1614-1623.
|
19 |
SUMMA P, SAMOJEDEN B, MOTAK M, et al. Investigation of Cu promotion effect on hydrotalcite-based nickel catalyst for CO2 methanation[J]. Catalysis Today, 2022, 384/385/386: 133-145.
|
20 |
JIANG Dahao, WU Xianyuan, MAO Jun, et al. Continuous catalytic upgrading of ethanol to n-butanol over Cu-CeO2/AC catalysts[J]. Chemical Communications (Cambridge, England), 2016, 52(95): 13749-13752.
|
21 |
EAGAN N M, LANCI M P, HUBER G W. Kinetic modeling of alcohol oligomerization over calcium hydroxyapatite[J]. ACS Catalysis, 2020, 10(5): 2978-2989.
|
22 |
PERRONE O M, SIQUEIRA M R, METZKER G, et al. Copper and lanthanum mixed oxides as catalysts for ethanol Guerbet coupling: The role of La3+ on the production of long-chain alcohols[J]. Environmental Progress & Sustainable Energy, 2020, 40(2): e13541.
|
23 |
WANG Dong, LIU Zhenyu, LIU Qingya. Efficient conversion of ethanol to 1-butanol and C5-C9 alcohols over calcium carbide[J]. RSC Advances, 2019, 9(33): 18941-18948.
|
24 |
WANG Dong, LIU Zhenyu, LIU Qingya. Synthesis of 1-butanol from ethanol over calcium ethoxide: Experimental and density functional theory simulation[J]. The Journal of Physical Chemistry C, 2019, 123(37): 22932-22940.
|
25 |
PANG Jifeng, ZHENG Mingyuan, WANG Zhinuo, et al. Catalytic upgrading of ethanol to butanol over a binary catalytic system of FeNiO x and LiOH[J]. Chinese Journal of Catalysis, 2020, 41(4): 672-678.
|
26 |
ZHANG Qian, LIU Wenping, CHEN Bo, et al. Upgrading of aqueous ethanol to fuel grade higher alcohols over dandelion-like Ni-Sn catalyst[J]. Energy Conversion and Management, 2020, 216: 112914.
|
27 |
ZAFFRAN J, MICHEL C, DELBECQ F, et al. Trade-off between accuracy and universality in linear energy relations for alcohol dehydrogenation on transition metals[J]. The Journal of Physical Chemistry C, 2015, 119(23): 12988-12998.
|
28 |
JORDISON T L, LIRA C T, MILLER D J. Condensed-phase ethanol conversion to higher alcohols[J]. Industrial & Engineering Chemistry Research, 2015, 54(44): 10991-11000.
|
29 |
PANG Jifeng, ZHENG Mingyuan, HE Lei, et al. Upgrading ethanol to n-butanol over highly dispersed Ni-MgAlO catalysts[J]. Journal of Catalysis, 2016, 344: 184-193.
|
30 |
EARLEY J H, BOURNE R A, WATSON M J, et al. Continuous catalytic upgrading of ethanol to n-butanol and>C4 products over Cu/CeO2 catalysts in supercritical CO2 [J]. Green Chemistry, 2015, 17 (5): 3018-3025.
|
31 |
ZHANG Jian, SHI Kai, AN Zhe, et al. Acid-base promoted dehydrogenation coupling of ethanol on supported Ag particles[J]. Industrial & Engineering Chemistry Research, 2020, 59(8): 3342-3350.
|
32 |
JIANG Dahao, FANG Geqian, TONG Yuqin, et al. Multifunctional Pd@UiO-66 catalysts for continuous catalytic upgrading of ethanol to n‑butanol[J]. ACS Catalysis, 2018, 8(12): 11973-11978.
|
33 |
WANG Zhinuo, PANG Jifeng, SONG Lei, et al. Conversion of ethanol to n-butanol over NiCeO2 based catalysts: Effects of metal dispersion and NiCe interactions[J]. Industrial & Engineering Chemistry Research, 2020, 59(51): 22057-22067.
|
34 |
XUE Machen, YANG Bolun, XIA Chungu, et al. Upgrading ethanol to higher alcohols via biomass-derived Ni/bio-apatite[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(11): 3466-3476.
|
35 |
DONG Chao, YU Qun, YE Runping, et al. Hollow carbon sphere nanoreactors loaded with PdCu nanoparticles: Void-confinement effects in liquid-phase hydrogenations[J]. Angewandte Chemie International Edition, 2020, 59(42): 18374-18379.
|
36 |
ZHANG Jian, SHI Kai, ZHU Yanru, et al. Interfacial sites in Ag supported layered double oxide for dehydrogenation coupling of ethanol to n-butanol[J]. ChemistryOpen, 2021, 10(11):1095-1103.
|
37 |
NIKOLAEV S A, CHISTYAKOV A V, ZHAROVA P A, et al. Synergistic effect of gold and copper in the catalytic conversion of ethanol to linear α-alcohols[J]. Petroleum Chemistry, 2016, 56(8): 730-737.
|
38 |
NIKOLAEV S A, TSODIKOV M V, CHISTYAKOV A V, et al. PdCu nanoalloy supported on alumina: A stable and selective catalyst for the conversion of bioethanol to linear α-alcohols[J]. Catalysis Today, 2021, 379: 50-61.
|
39 |
NEZAM I, ZAK J, MILLER D J. Condensed-phase ethanol conversion to higher alcohols over bimetallic catalysts[J]. Industrial & Engineering Chemistry Research, 2020, 59(31): 13906-13915.
|
40 |
FEI Xing, XU Quanzhou, XUE Lijing, et al. Aqueous phase catalytic conversion of ethanol to higher alcohols over NiSn bimetallic catalysts encapsulated in nitrogen-doped biorefinery lignin-based carbon[J]. Industrial & Engineering Chemistry Research, 2021, 60(49): 17959-17969.
|