化工进展 ›› 2023, Vol. 42 ›› Issue (1): 16-29.DOI: 10.16085/j.issn.1000-6613.2022-1639
收稿日期:
2022-09-05
修回日期:
2022-10-12
出版日期:
2023-01-25
发布日期:
2023-02-20
通讯作者:
周雍进
作者简介:
姚伦(1985—),男,博士,副研究员,研究方向为甲醇酵母合成生物学和代谢工程。E-mail:yaolun@dicp.ac.cn。
基金资助:
Received:
2022-09-05
Revised:
2022-10-12
Online:
2023-01-25
Published:
2023-02-20
Contact:
ZHOU Yongjin
摘要:
一碳化合物(包括CO2、CO、甲烷、甲醇、甲酸等)来源广泛,价格低廉,并且有望通过光催化、电催化等实现绿色、可持续生产,被认为是下一代生物制造的理想原料。自然界中广泛存在多种能够天然利用一碳化合物的微生物,对这些微生物开展研究,并进行改造和利用,使其以一碳资源为原料合成能源和化学品,对于降低对传统化石资源的依赖,实现绿色、可持续发展具有重要意义。本文主要概述各种一碳化合物的原料来源,包括传统化石资源和可再生原料、一碳化合物微生物利用途径以及各种一碳利用微生物及其改造合成燃料和化学品的相关研究进展,并对近年来构建合成型一碳转化体系的相关研究进行总结,最后分析了一碳化合物生物转化面临的挑战并对未来研究方向进行展望。
中图分类号:
姚伦, 周雍进. 一碳化合物生物利用和转化研究进展[J]. 化工进展, 2023, 42(1): 16-29.
YAO Lun, ZHOU Yongjin. Progress in microbial utilization of one-carbon feedstocks for biomanufacturing[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 16-29.
图2 微生物中一碳化合物代谢途径MMO—甲烷单加氧化酶;MDH/AOX—甲醇脱氢酶/醇氧化酶;FADH—甲醛脱氢酶;FDH—甲酸脱氢酶;PRK—磷酸核酮糖激酶;DAS—二羟基丙酮合酶;GCS—甘氨酸裂解体系(glycine cleavage system);RuBisCO—1,5-二磷酸核酮糖羧化/加氧酶;CODH/ACS—一氧化碳脱氢酶/乙酰辅酶A合成酶复合体;RuMP—核酮糖单磷酸途径;XuMP—木酮糖单磷酸途径;RG pathway—还原甘氨酸途径;CBB cycle—卡尔文循环;W-L pathway—Wood-Ljungdahl途径;Ru5P—核酮糖-5-磷酸;H6P—6-磷酸己酮糖;F6P—6-磷酸果糖;G6P—6-磷酸葡萄糖;6PG—磷酸葡萄糖酸;FBP—1,6-二磷酸果糖;DHAP—磷酸二羟丙酮;GAP—3-磷酸甘油醛;R5P—核糖-5-磷酸;PEP—磷酸烯醇式丙酮酸;OAA—草酰乙酸;Xu5P—木酮糖-5-磷酸;RuBP—核酮糖1,5二磷酸;PGA—3-磷酸甘油酸
一碳利用 微生物 | 代表物种 | 一碳底物 | 一碳利用途径 | 遗传操作 | 主要产物 | 参考 文献 |
---|---|---|---|---|---|---|
微藻 | Chlamydomonas reinhardtii、Phaeodactylum tricornutum、Nannochloropsis oceanica | CO2 | CBB循环 | 大部分菌株难以进行遗传改造 | 三酰甘油等 | [ |
蓝细菌 | Synechocystis sp. PCC6803、Synechococcuselongatus PCC 7942、Synechococcus sp. PCC7002 | CO2 | CBB循环 | 具备成熟的遗传操作体系 | 短链醇、长链脂肪酸及其衍生物等 | [ |
一氧化碳自养菌(需氧型) | Oligotropha carboxidovorans、Hydrogenophaga pseudoflava | CO、CO2(+H2) | CBB循环 | 仅少数菌株能够进行遗传操作 | PHA/PHB等 | [ |
产乙酸菌 | Clostridium autoethanogenum、 Clostridium ljungdahlii、 Clostridium carboxidivorans、Acetobacterium woodii | CO、CO2(+H2)、甲醇、甲酸 | Wood-Ljungdahl途径 | 仅少数菌株能够进行遗传操作 | 有机酸、短链醇等 | [ |
甲烷氧化菌 | Methylomicrobium alcaliphilum、 Methylotuvimicrobium buryatense、 Methylococcus capsulatus | 甲烷、甲醇、CO2 | RuMP途径、 丝氨酸循环、 CBB循环 | 遗传操作工具 相对有限 | PHB、有机酸、 短链醇等 | [ |
甲醇细菌 | Methylobacterium extorquens、Bacillus methanolicus | 甲醇 | RuMP途径、 丝氨酸循环 | 遗传操作 相对成熟 | 有机酸、PHA、氨基酸及其衍生物等 | [ |
甲醇酵母 | Komagataella phaffii、 Ogataea polymorpha | 甲醇 | XuMP途径 | 具备成熟的 遗传操作系统 | 有机酸、脂肪酸及 其衍生物等 | [ |
钩虫贪铜菌 | Cupriavidus necator | CO2(+H2)、甲酸 | CBB循环 | 遗传操作 相对成熟 | PHB、短链醇等 | [ |
表1 一碳利用微生物及相关产物合成
一碳利用 微生物 | 代表物种 | 一碳底物 | 一碳利用途径 | 遗传操作 | 主要产物 | 参考 文献 |
---|---|---|---|---|---|---|
微藻 | Chlamydomonas reinhardtii、Phaeodactylum tricornutum、Nannochloropsis oceanica | CO2 | CBB循环 | 大部分菌株难以进行遗传改造 | 三酰甘油等 | [ |
蓝细菌 | Synechocystis sp. PCC6803、Synechococcuselongatus PCC 7942、Synechococcus sp. PCC7002 | CO2 | CBB循环 | 具备成熟的遗传操作体系 | 短链醇、长链脂肪酸及其衍生物等 | [ |
一氧化碳自养菌(需氧型) | Oligotropha carboxidovorans、Hydrogenophaga pseudoflava | CO、CO2(+H2) | CBB循环 | 仅少数菌株能够进行遗传操作 | PHA/PHB等 | [ |
产乙酸菌 | Clostridium autoethanogenum、 Clostridium ljungdahlii、 Clostridium carboxidivorans、Acetobacterium woodii | CO、CO2(+H2)、甲醇、甲酸 | Wood-Ljungdahl途径 | 仅少数菌株能够进行遗传操作 | 有机酸、短链醇等 | [ |
甲烷氧化菌 | Methylomicrobium alcaliphilum、 Methylotuvimicrobium buryatense、 Methylococcus capsulatus | 甲烷、甲醇、CO2 | RuMP途径、 丝氨酸循环、 CBB循环 | 遗传操作工具 相对有限 | PHB、有机酸、 短链醇等 | [ |
甲醇细菌 | Methylobacterium extorquens、Bacillus methanolicus | 甲醇 | RuMP途径、 丝氨酸循环 | 遗传操作 相对成熟 | 有机酸、PHA、氨基酸及其衍生物等 | [ |
甲醇酵母 | Komagataella phaffii、 Ogataea polymorpha | 甲醇 | XuMP途径 | 具备成熟的 遗传操作系统 | 有机酸、脂肪酸及 其衍生物等 | [ |
钩虫贪铜菌 | Cupriavidus necator | CO2(+H2)、甲酸 | CBB循环 | 遗传操作 相对成熟 | PHB、短链醇等 | [ |
宿主 | 一碳原料 | 代谢途径 | 参考文献 |
---|---|---|---|
E. coli | CO2/甲酸 | CBB循环 | [ |
CO2/甲酸 | 还原甘氨酸途径 | [ | |
CO2 | POAP循环 | [ | |
甲酸/甲醛/甲醇 | FORCE途径 | [ | |
甲醇 | RuMP途径 | [ | |
甲酸/甲醇 | 丝氨酸循环 | [ | |
甲醇 | SACA途径 | [ | |
Saccharomyces cerevisiae | CO2/甲酸 | 还原甘氨酸途径 | [ |
甲醇 | XuMP途径 | [ | |
Methylorubrumextorquens | CO2 | CBB循环 | [ |
Clostridium pasteurianum | CO2/甲酸 | 还原甘氨酸途径 | [ |
Cupriavidus necator | 甲酸/CO2 | 还原甘氨酸途径 | [ |
Corynebacteriumglutamicum | 甲醇 | RuMP途径 | [ |
Yarrowia lipolytica | 甲醇 | RuMP/XuMP途径 | [ |
酶催化体系 | CO2 | 甲醛裂合酶途径 | [ |
CO2 | CETCH循环 | [ | |
CO2 | rGPS-MCG循环 | [ | |
甲醇 | MCC途径 | [ | |
甲醇 | ASAP途径 | [ |
表2 合成型一碳化合物利用体系
宿主 | 一碳原料 | 代谢途径 | 参考文献 |
---|---|---|---|
E. coli | CO2/甲酸 | CBB循环 | [ |
CO2/甲酸 | 还原甘氨酸途径 | [ | |
CO2 | POAP循环 | [ | |
甲酸/甲醛/甲醇 | FORCE途径 | [ | |
甲醇 | RuMP途径 | [ | |
甲酸/甲醇 | 丝氨酸循环 | [ | |
甲醇 | SACA途径 | [ | |
Saccharomyces cerevisiae | CO2/甲酸 | 还原甘氨酸途径 | [ |
甲醇 | XuMP途径 | [ | |
Methylorubrumextorquens | CO2 | CBB循环 | [ |
Clostridium pasteurianum | CO2/甲酸 | 还原甘氨酸途径 | [ |
Cupriavidus necator | 甲酸/CO2 | 还原甘氨酸途径 | [ |
Corynebacteriumglutamicum | 甲醇 | RuMP途径 | [ |
Yarrowia lipolytica | 甲醇 | RuMP/XuMP途径 | [ |
酶催化体系 | CO2 | 甲醛裂合酶途径 | [ |
CO2 | CETCH循环 | [ | |
CO2 | rGPS-MCG循环 | [ | |
甲醇 | MCC途径 | [ | |
甲醇 | ASAP途径 | [ |
1 | Renewable Fuels Association. Annual ethanol production: U.S. and world ethanol production[DS]. 2022. |
2 | United States Department of Agriculture. U.S. Bioenergy statistics[DS]. 2022. |
3 | LARK T J, HENDRICKS N P, SMITH A, et al. Environmental outcomes of the US renewable fuel standard[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(9): e2101084119. |
4 | GHOSH D, DASGUPTA D, AGRAWAL D, et al. Fuels and chemicals from lignocellulosic biomass: An integrated biorefinery approach[J]. Energy & Fuels, 2015, 29(5): 3149-3157. |
5 | SINGH N, SINGHANIA R R, NIGAM P S, et al. Global status of lignocellulosic biorefinery: Challenges and perspectives[J]. Bioresource Technology, 2022, 344(Pt B): 126415. |
6 | ZHANG C, OTTENHEIM C, WEINGARTEN M, et al. Microbial utilization of next-generation feedstocks for the biomanufacturing of value-added chemicals and food ingredients[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 874612. |
7 | International Energy Agency. Global energy review: CO2 emissions in 2021[R]. 2022. |
8 | HASAN M M F, ROSSI L M, DEBECKER D P, et al. Can CO2 and renewable carbon be primary resources for sustainable fuels and chemicals?[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(37): 12427-12430. |
9 | 葛庆杰. 第六章 合成气化学[J]. 工业催化, 2016, 24(3): 82-104. |
GE Qingjie. Chapter Ⅵ Chemistry of synthesis gas[J]. Industrial Catalysis, 2016, 24(3): 82-104. | |
10 | International Energy Agency. Global methane tracker[R]. 2022. |
11 | ZHANG Yuming, WAN Lifeng, GUAN Juntao, et al. A review on biomass gasification: Effect of main parameters on char generation and reaction[J]. Energy & Fuels, 2020, 34(11): 13438-13455. |
12 | 2021年度甲醇市场发展报告[N/OL]: 中国化工信息周刊网, 2021-5-21. . |
13 | SHIH C F, ZHANG T, LI J H, et al. Powering the future with liquid sunshine[J]. Joule, 2018, 2(10): 1925-1949. |
14 | 王集杰, 韩哲, 陈思宇,等. 太阳燃料甲醇合成[J]. 化工进展, 2022, 41(3): 1309-1317. |
WANG Jijie, HAN Zhe, CHEN Siyu, et al. Liquid sunshine methanol[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1309-1317. | |
15 | COTTON C A, CLAASSENS N J, BENITO-VAQUERIZO S, et al. Renewable methanol and formate as microbial feedstocks[J]. Current Opinion in Biotechnology, 2020, 62: 168-180. |
16 | YISHAI O, LINDNER S N, GONZALEZ DE LA CRUZ J, et al. The formate bio-economy[J]. Current Opinion in Chemical Biology, 2016, 35: 1-9. |
17 | JIANG W, HERNáNDEZ VILLAMOR D, PENG H, et al. Metabolic engineering strategies to enable microbial utilization of C1 feedstocks[J]. Nature Chemical Biology, 2021, 17(8): 845-855. |
18 | SÁNCHEZ-ANDREA I, GUEDES I A, HORNUNG B, et al. The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans[J]. Nature Communications, 2020, 11(1): 5090. |
19 | LIU Z H, WANG K, CHEN Y, et al. Third-generation biorefineries as the means to produce fuels and chemicals from CO2 [J]. Nature Catalysis, 2020, 3: 274-288. |
20 | BAR-EVEN A, FLAMHOLZ A, NOOR E, et al. Thermodynamic constraints shape the structure of carbon fixation pathways[J]. Biochimica et Biophysica Acta (BBA): Bioenergetics, 2012, 1817(9): 1646-1659. |
21 | HANSON D T. Breaking the rules of Rubisco catalysis[J]. Journal of Experimental Botany, 2016, 67(11): 3180-3182. |
22 | POUDEL S, PIKE D H, RAANAN H, et al. Biophysical analysis of the structural evolution of substrate specificity in RuBisCo[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(48): 30451-30457. |
23 | LIN M T, OCCHIALINI A, ANDRALOJC P J, et al. A faster Rubisco with potential to increase photosynthesis in crops[J]. Nature, 2014, 513(7519): 547-550. |
24 | SATAGOPAN S, HUENING K A, TABITA F R. Selection of cyanobacterial (Synechococcus sp. strain PCC 6301) RubisCO variants with improved functional properties that confer enhanced CO2-dependent growth of rhodobacter capsulatus, a photosynthetic bacterium[J]. mBio, 2019, 10(4). |
25 | LIN M T, SALIHOVIC H, CLARK F K, et al. Improving the efficiency of Rubisco by resurrecting its ancestors in the family Solanaceae[J]. Science Advances, 2022, 8(15): eabm6871. |
26 | MATSUMURA H, SHIOMI K, YAMAMOTO A, et al. Hybrid Rubisco with complete replacement of rice Rubisco small subunits by sorghum counterparts confers C4 plant-like high catalytic activity[J]. Molecular Plant, 2020, 13(11): 1570-1581. |
27 | SVETLITCHNYI V, PESCHEL C, ACKER G, et al. Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans [J]. Journal of Bacteriology, 2001, 183(17): 5134-5144. |
28 | ZHANG B, HEMANN C F, HILLE R. Kinetic and spectroscopic studies of the molybdenum-copper CO dehydrogenase from Oligotropha carboxidovorans [J]. The Journal of Biological Chemistry, 2010, 285(17): 12571-12578. |
29 | KIM S M, LEE J, KANG S H, et al. O2-tolerant CO dehydrogenase via tunnel redesign for the removal of CO from industrial flue gas[J]. Nature Catalysis, 2022, 5(9): 807-817. |
30 | RAGSDALE S W, PIERCE E. Acetogenesis and the wood-ljungdahl pathway of CO2 fixation[J]. Biochimica et Biophysica Acta (BBA): Proteins and Proteomics, 2008, 1784(12): 1873-1898. |
31 | SIRAJUDDIN S, ROSENZWEIG A C. Enzymatic oxidation of methane[J]. Biochemistry, 2015, 54(14): 2283-2294. |
32 | CHISTOSERDOVA L, KALYUZHNAYA M G. Current trends in methylotrophy[J]. Trends in Microbiology, 2018, 26(8): 703-714. |
33 | YURIMOTO H, OKU M, SAKAI Y. Yeast methylotrophy: Metabolism, gene regulation and peroxisome homeostasis[J]. International Journal of Microbiology, 2011, 2011: 101298. |
34 | KROG A, HEGGESET T M, MULLER J E, et al. Methylotrophic Bacillus methanolicus encodes two chromosomal and one plasmid born NAD+ dependent methanol dehydrogenase paralogs with different catalytic and biochemical properties[J]. PLoS One, 2013, 8(3): e59188. |
35 | WU T Y, CHEN C T, LIU J T, et al. Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1[J]. Applied Microbiology and Biotechnology, 2016, 100(11): 4969-4983. |
36 | ROTH T B, WOOLSTON B M, STEPHANOPOULOS G, et al. Phage-assisted evolution of Bacillus methanolicus methanol dehydrogenase 2[J]. ACS Synthetic Biology, 2019, 8(4): 796-806. |
37 | PFEIFENSCHNEIDER J, MARKERT B, STOLZENBERGER J, et al. Transaldolase in Bacillus methanolicus: Biochemical characterization and biological role in ribulose monophosphate cycle[J]. BMC Microbiology, 2020, 20(1): 63. |
38 | MAO W, YUAN Q, QI H, et al. Recent progress in metabolic engineering of microbial formate assimilation[J]. Applied Microbiology and Biotechnology, 2020, 104(16): 6905-6917. |
39 | LEONG Y K, CHEW K W, CHEN W-H, et al. Reuniting the biogeochemistry of algae for a low-carbon circular bioeconomy[J]. Trends in Plant Science, 2021, 26(7): 729-740. |
40 | CHISTI Y. Biodiesel from microalgae[J]. Biotechnology Advances, 2007, 25(3): 294-306. |
41 | FAYYAZ M, CHEW K W, SHOW P L, et al. Genetic engineering of microalgae for enhanced biorefinery capabilities[J]. Biotechnology Advances, 2020, 43: 107554. |
42 | VAVITSAS K, CROZET P, VINDE M H, et al. The synthetic biology toolkit for photosynthetic microorganisms[J]. Plant Physiology, 2019, 181(1): 14-27. |
43 | OLIVER N J, RABINOVITCH-DEERE C A, CARROLL A L, et al. Cyanobacterial metabolic engineering for biofuel and chemical production[J]. Current Opinion in Chemical Biology, 2016, 35: 43-50. |
44 | AGARWAL P, SONI R, KAUR P, et al. Cyanobacteria as a promising alternative for sustainable environment: Synthesis of biofuel and biodegradable plastics[J]. Frontiers in Microbiology, 2022, 13: 939347. |
45 | SIEBERT D, EIKMANNS B J, BLOMBACH B. Exploiting aerobic carboxydotrophic bacteria for industrial biotechnology[J]. Advances in Biochemical Engineering/Biotechnology, 2022, 180: 1-32. |
46 | GRENZ S, BAUMANN P T, RüCKERT C, et al. Exploiting Hydrogenophaga pseudoflava for aerobic syngas-based production of chemicals[J]. Metabolic Engineering, 2019, 55: 220-230. |
47 | SIEBERT D, BUSCHE T, METZ A Y, et al. Genetic engineering of Oligotropha carboxidovorans strain OM5-A promising candidate for the aerobic utilization of synthesis gas[J]. ACS Synthetic Biology, 2020, 9(6): 1426-1440. |
48 | MARCELLIN E, BEHRENDORFF J B, NAGARAJU S, et al. Low carbon fuels and commodity chemicals from waste gases-systematic approach to understand energy metabolism in a model acetogen[J]. Green Chemistry, 2016, 18(10): 3020-3028. |
49 | BOURGADE B, MINTON N P, ISLAM M A. Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms[J]. FEMS Microbiology Reviews, 2021, 45(2): fuab008. |
50 | HOFFMEISTER S, GERDOM M, BENGELSDORF F R, et al. Acetone production with metabolically engineered strains of Acetobacterium woodii [J]. Metabolic Engineering, 2016, 36: 37-47. |
51 | UEKI T, NEVIN K P, WOODARD T L, et al. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii [J]. mBio, 2014, 5(5): e01636-e01614. |
52 | IWASAKI Y, KITA A, YOSHIDA K, et al. Homolactic acid fermentation by the genetically engineered thermophilic homoacetogen Moorella thermoacetica ATCC 39073[J]. Applied and Environmental Microbiology, 2017, 83(8): e00247-e00217. |
53 | LITTY D, MÜLLER V. Butyrate production in the acetogen Eubacterium limosum is dependent on the carbon and energy source[J]. Microbial Biotechnology, 2021, 14(6): 2686-2692. |
54 | GĘSICKA A, OLESKOWICZ-POPIEL P, ŁĘŻYK M. Recent trends in methane to bioproduct conversion by methanotrophs[J]. Biotechnology Advances, 2021, 53: 107861. |
55 | SAHOO K K, GOSWAMI G, DAS D. Biotransformation of methane and carbon dioxide into high-value products by methanotrophs: Current state of art and future prospects[J]. Frontiers in Microbiology, 2021, 12: 636486. |
56 | NGUYEN D T N, LEE O K, NGUYEN T T, et al. Type Ⅱ methanotrophs: A promising microbial cell-factory platform for bioconversion of methane to chemicals[J]. Biotechnology Advances, 2021, 47: 107700. |
57 | SCHNEIDER K, PEYRAUD R, KIEFER P, et al. The ethylmalonyl-CoA pathway is used in place of the glyoxylate cycle by Methylobacterium extorquens AM1 during growth on acetate[J]. The Journal of Biological Chemistry, 2012, 287(1): 757-766. |
58 | SCHENDEL F J, BREMMON C E, FLICKINGER M C, et al. L-lysine production at 50 degrees C by mutants of a newly isolated and characterized methylotrophic Bacillus sp.[J]. Applied and Environmental Microbiology, 1990, 56(4): 963-970. |
59 | MO X H, ZHANG H, WANG T M, et al. Establishment of CRISPR interference in Methylorubrum extorquens and application of rapidly mining a new phytoene desaturase involved in carotenoid biosynthesis[J]. Applied Microbiology and Biotechnology, 2020, 104(10): 4515-4532. |
60 | VON BORZYSKOWSKI L S, REMUS-EMSERMANN M, WEISHAUPT R, et al. A set of versatile brick vectors and promoters for the assembly, expression, and integration of synthetic operons in Methylobacterium extorquens AM1 and other alphaproteobacteria[J]. ACS Synthetic Biology, 2015, 4(4): 430-443. |
61 | ZHANG W, SONG M, YANG Q, et al. Current advance in bioconversion of methanol to chemicals[J]. Biotechnology for Biofuels, 2018, 11: 260. |
62 | GAO J, GAO N, ZHAI X, et al. Recombination machinery engineering for precise genome editing in methylotrophic yeast Ogataea polymorpha [J]. iScience, 2021, 24(3): 102168. |
63 | GAO J, JIANG L, LIAN J. Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products[J]. Synthetic and Systems Biotechnology, 2021, 6(2): 110-119. |
64 | GAO J, LI Y, YU W, et al. Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol[J]. Nature Metabolism, 2022, 4(7): 932-943. |
65 | CAI P, WU X, DENG J, et al. Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast Pichia pastoris [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(29): e2201711119. |
66 | WENINGER A, HATZL A M, SCHMID C, et al. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris [J]. Journal of Biotechnology, 2016, 235: 139-149. |
67 | CAI P, LI Y, ZHAI X, et al. Microbial synthesis of long-chain α-alkenes from methanol by engineering Pichia pastoris [J]. Bioresources and Bioprocessing, 2022, 9(1): 1-8. |
68 | CAI P, DUAN X, WU X, et al. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris [J]. Nucleic Acids Research, 2021, 49(13): 7791-7805. |
69 | GAI C S, LU J, BRIGHAM C J, et al. Insights into bacterial CO2 metabolism revealed by the characterization of four carbonic anhydrases in Ralstonia eutropha H16[J]. AMB Express, 2014, 4(1): 2. |
70 | ISHIZAKI A, TANAKA K, TAGA N. Microbial production of poly-D-3-hydroxybutyrate from CO2 [J]. Applied Microbiology and Biotechnology, 2001, 57(1/2): 6-12. |
71 | PANICH J, FONG B, SINGER S W. Metabolic engineering of Cupriavidus necator H16 for sustainable biofuels from CO2 [J]. Trends in Biotechnology, 2021, 39(4): 412-424. |
72 | PAN H, WANG J, WU H, et al. Synthetic biology toolkit for engineering Cupriviadus necator H16 as a platform for CO2 valorization[J]. Biotechnology for Biofuels, 2021, 14(1): 212. |
73 | MARC J, GROUSSEAU E, LOMBARD E, et al. Over expression of GroESL in Cupriavidus necator for heterotrophic and autotrophic isopropanol production[J]. Metabolic Engineering, 2017, 42: 74-84. |
74 | MELIS A. Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency[J]. Plant Science, 2009, 177(4): 272-280. |
75 | CHEN M, BLANKENSHIP R E. Expanding the solar spectrum used by photosynthesis[J]. Trends in Plant Science, 2011, 16(8): 427-431. |
76 | GROUSSEAU E, LU J, GORRET N, et al. Isopropanol production with engineered Cupriavidus necator as bioproduction platform[J]. Applied Microbiology and Biotechnology, 2014, 98(9): 4277-4290. |
77 | KRIEG T, SYDOW A, FAUST S, et al. CO2 to terpenes: Autotrophic and electroautotrophic α-humulene production with Cupriavidus necator [J]. Angewandte Chemie International Edition, 2018, 57(7): 1879-1882. |
78 | MULLER J, MACEACHRAN D, BURD H, et al. Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones[J]. Applied and Environmental Microbiology, 2013, 79(14): 4433-4439. |
79 | NANGLE S N, ZIESACK M, BUCKLEY S, et al. Valorization of CO2 through lithoautotrophic production of sustainable chemicals in Cupriavidus necator [J]. Metabolic Engineering, 2020, 62: 207-220. |
80 | CHEN J S, COLÓN B, DUSEL B, et al. Production of fatty acids in Ralstonia eutropha H16 by engineering β-oxidation and carbon storage[J]. PeerJ, 2015, 3: e1468. |
81 | CRÉPIN L, LOMBARD E, GUILLOUET S E. Metabolic engineering of Cupriavidus necator for heterotrophic and autotrophic alka(e)ne production[J]. Metabolic Engineering, 2016, 37: 92-101. |
82 | MEYER O, SCHLEGEL H G. Reisolation of the carbon monoxide utilizing hydrogen bacterium Pseudomonas carboxydovorans (Kistner) comb. nov[J]. Archives of Microbiology, 1978, 118(1): 35-43. |
83 | BANERJEE A, LEANG C, UEKI T, et al. Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii [J]. Applied and Environmental Microbiology, 2014, 80(8): 2410-2416. |
84 | FLUCHTER S, FOLLONIER S, SCHIEL-BENGELSDORF B, et al. Anaerobic production of poly(3-hydroxybutyrate) and its precursor 3-hydroxybutyrate from synthesis gas by autotrophic Clostridia [J]. Biomacromolecules, 2019, 20(9): 3271-3282. |
85 | DINER B A, FAN J, SCOTCHER M C, et al. Synthesis of heterologous mevalonic acid pathway enzymes in Clostridium ljungdahlii for the conversion of fructose and of syngas to mevalonate and isoprene[J]. Applied and Environmental Microbiology, 2018, 84(1): e01723-e01717. |
86 | 蔡朝阳, 何崭飞, 胡宝兰. 甲烷氧化菌分类及代谢途径研究进展[J]. 浙江大学学报(农业与生命科学版), 2016, 42(3): 273-281. |
CAI Chaoyang, HE Zhanfei, HU Baolan. Progresses in the classification and mechanism of methane-oxidizing bacteria[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(3): 273-281. | |
87 | XIN J Y, ZHANG Y X, ZHANG S, et al. Methanol production from CO2 by resting cells of the methanotrophic bacterium Methylosinus trichosporium IMV 3011[J]. Journal of Basic Microbiology, 2007, 47(5): 426-435. |
88 | PATEL S K S, KONDAVEETI S, OTARI S V, et al. Repeated batch methanol production from a simulated biogas mixture using immobilized Methylocystis bryophila [J]. Energy, 2018, 145: 477-485. |
89 | PEEL D, QUAYLE J R. Microbial growth on C1 compounds. Ⅰ. Isolation and characterization of Pseudomonas AM 1[J]. The Biochemical Journal, 1961, 81(3): 465-469. |
90 | GOOD N M, VU H N, SURIANO C J, et al. Pyrroloquinoline quinone ethanol dehydrogenase in Methylobacterium extorquens AM1 extends lanthanide-dependent metabolism to multicarbon substrates[J]. Journal of Bacteriology, 2016, 198(22): 3109-3118. |
91 | BRAUTASET T, JAKOBSEN O M, DEGNES K F, et al. Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase Ⅰ and Ⅱ and their roles for l-lysine production from methanol at 50 degrees C[J]. Applied Microbiology and Biotechnology, 2010, 87(3): 951-964. |
92 | OCHSNER A M, CHRISTEN M, HEMMERLE L, et al. Transposon sequencing uncovers an essential regulatory function of phosphoribulokinase for methylotrophy[J]. Current Biology, 2017, 27(17): 2579-2588. |
93 | SCHULTENKÄMPER K, BRITO L F, LÓPEZ M G, et al. Establishment and application of CRISPR interference to affect sporulation, hydrogen peroxide detoxification, and mannitol catabolism in the methylotrophic thermophile Bacillus methanolicus [J]. Applied Microbiology and Biotechnology, 2019, 103(14): 5879-5889. |
94 | IRLA M, HAKVÅG S, BRAUTASET T. Developing a riboswitch-mediated regulatory system for metabolic flux control in thermophilic Bacillus methanolicus [J]. International Journal of Molecular Sciences, 2021, 22(9): 4686. |
95 | CHEN A Y, LAN E I. Chemical production from methanol using natural and synthetic methylotrophs[J]. Biotechnology Journal, 2020, 15(6): e1900356. |
96 | YAMADA R, OGURA K, KIMOTO Y, et al. Toward the construction of a technology platform for chemicals production from methanol: D-lactic acid production from methanol by an engineered yeast Pichia pastoris [J]. World Journal of Microbiology and Biotechnology, 2019, 35: 1-9. |
97 | GUO Feng, DAI Zhongxue, PENG Wenfeng, et al. Metabolic engineering of Pichia pastoris for malic acid production from methanol[J]. Biotechnology and Bioengineering, 2021, 118(1): 357-371. |
98 | 冯叨, 高教琪, 龚志伟, 等. 多形汉逊酵母代谢改造生产脂肪酸及发酵条件优化[J]. 生物工程学报, 2022, 38(2): 760-771. |
FENG Dao, GAO Jiaoqi, GONG Zhiwei, et al. Production of fatty acids by engineered Ogataea polymorpha [J]. Chinese Journal of Biotechnology, 2022, 38(2): 760-771. | |
99 | 高琳惠, 蔡鹏, 周雍进. 甲醇酵母代谢工程研究进展[J]. 生物工程学报, 2021, 37(3): 966-979. |
GAO Linhui, CAI Peng, ZHOU Yongjin. Advances in metabolic engineering of methylotrophic yeasts[J]. Chinese Journal of Biotechnology, 2021, 37(3): 966-979. | |
100 | CLAASSENS N J, BORDANABA-FLORIT G, COTTON C A R, et al. Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator [J]. Metabolic Engineering, 2020, 62: 30-41. |
101 | MOON J, DöNIG J, KRAMER S, et al. Formate metabolism in the acetogenic bacterium Acetobacterium woodii [J]. Environmental Microbiology, 2021, 23(8): 4214-4227. |
102 | GLEIZER S, BEN-NISSAN R, BAR-ON Y M, et al. Conversion of Escherichia coli to generate all biomass carbon from CO2 [J]. Cell, 2019, 179(6): 1255-1263. |
103 | ANTONOVSKY N, GLEIZER S, NOOR E, et al. Sugar synthesis from CO2 in Escherichia coli [J]. Cell, 2016, 166(1): 115-125. |
104 | YISHAI O, BOUZON M, DORING V, et al. In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli [J]. ACS Synthetic Biology, 2018, 7(9): 2023-2028. |
105 | BANG J, HWANG C H, AHN J H, et al. Escherichia coli is engineered to grow on CO2 and formic acid[J]. Nature Microbiology, 2020, 5(12): 1459-1463. |
106 | YISHAI O, GOLDBACH L, TENENBOIM H, et al. Engineered assimilation of exogenous and endogenous formate in Escherichia coli [J]. ACS Synthetic Biology, 2017, 6(9): 1722-1731. |
107 | BANG J, LEE S Y. Assimilation of formic acid and CO2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(40): e9271-e9279. |
108 | TASHIRO Y, HIRANO S, MATSON M M, et al. Electrical-biological hybrid system for CO2 reduction[J]. Metabolic Engineering, 2018, 47: 211-218. |
109 | KIM S, LINDNER S N, ASLAN S, et al. Growth of E. coli on formate and methanol via the reductive glycine pathway[J]. Nature Chemical Biology, 2020, 16(5): 538-545. |
110 | XIAO Lu, LIU Guoxiu, GONG Fufu, et al. A minimized synthetic carbon fixation cycle[J]. ACS Catalysis, 2022, 12(1): 799-808. |
111 | CHOU A, LEE S H, ZHU F, et al. An orthogonal metabolic framework for one-carbon utilization[J]. Nature Metabolism, 2021, 3(10): 1385-1399. |
112 | CHEN F Y, JUNG H W, TSUEI C Y, et al. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol[J]. Cell, 2020, 182(4): 933-946.e14. |
113 | MEYER F, KELLER P, HARTL J, et al. Methanol-essential growth of Escherichia coli [J]. Nature Communications, 2018, 9(1): 1508. |
114 | WHITAKER W B, JONES J A, BENNETT R K, et al. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli [J]. Metabolic Engineering, 2017, 39: 49-59. |
115 | MULLER J E N, MEYER F, LITSANOV B, et al. Engineering Escherichia coli for methanol conversion[J]. Metabolic Engineering, 2015, 28: 190-201. |
116 | WOOLSTON B M, KING J R, REITER M, et al. Improving formaldehyde consumption drives methanol assimilation in engineered E. coli [J]. Nature Communications, 2018, 9(1): 2387. |
117 | BENNETT R K, GONZALEZ J E, WHITAKER W B, et al. Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph[J]. Metabolic Engineering, 2018, 45: 75-85. |
118 | YU H, LIAO J C. A modified serine cycle in Escherichia coli coverts methanol and CO2 to two-carbon compounds[J]. Nature Communications, 2018, 9(1): 3992. |
119 | LU Xiaoyun, LIU Yunan, YANG Yiquan, et al. Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design[J]. Nature Communications, 2019, 10(1): 1378. |
120 | GONZALEZ DE LA CRUZ J, MACHENS F, MESSERSCHMIDT K, et al. Core catalysis of the reductive glycine pathway demonstrated in yeast[J]. ACS Synthetic Biology, 2019, 8(5): 911-917. |
121 | DAI Zhongxue, GU Honglian, ZHANG Shangjie, et al. Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae [J]. Bioresource Technology, 2017, 245: 1407-1412. |
122 | SCHADA VON BORZYSKOWSKI L, CARRILLO M, LEUPOLD S, et al. An engineered Calvin-Benson-Bassham cycle for carbon dioxide fixation in Methylobacterium extorquens AM1[J]. Metabolic Engineering, 2018, 47: 423-433. |
123 | HONG Y, ARBTER P, WANG W, et al. Introduction of glycine synthase enables uptake of exogenous formate and strongly impacts the metabolism in Clostridium pasteurianum [J]. Biotechnology and Bioengineering, 2021, 118(3): 1366-1380. |
124 | TUYISHIME P, WANG Y, FAN L, et al. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production[J]. Metabolic Engineering, 2018, 49: 220-231. |
125 | LEßMEIER L, PFEIFENSCHNEIDER J, CARNICER M, et al. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate[J]. Applied Microbiology and Biotechnology, 2015, 99(23): 10163-10176. |
126 | WANG Y, FAN L, TUYISHIME P, et al. Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum [J]. Communications Biology, 2020, 3(1): 217. |
127 | WANG G, OLOFSSON-DOLK M, HANSSON F G, et al. Engineering yeast Yarrowia lipolytica for methanol assimilation[J]. ACS Synthetic Biology, 2021, 10(12): 3537-3550. |
128 | SIEGEL J B, SMITH A L, POUST S, et al. Computational protein design enables a novel one-carbon assimilation pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): 3704-3709. |
129 | SCHWANDER T, SCHADA VON BORZYSKOWSKI L, BURGENER S, et al. A synthetic pathway for the fixation of carbon dioxide in vitro [J]. Science, 2016, 354(6314): 900-904. |
130 | MILLER T E, BENEYTON T, SCHWANDER T, et al. Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts[J]. Science, 2020, 368(6491): 649-654. |
131 | SUNDARAM S, DIEHL C, CORTINA N S, et al. A modular in vitro platform for the production of terpenes and polyketides from CO2 [J]. Angewandte Chemie International Edition, 2021, 60(30): 16420-16425. |
132 | LUO S, LIN P P, NIEH L Y, et al. A cell-free self-replenishing CO2-fixing system[J]. Nature Catalysis, 2022, 5(2): 154-162. |
133 | BOGORAD I W, CHEN C T, THEISEN M K, et al. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(45): 15928-15933. |
134 | CAI T, SUN H, QIAO J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021, 373(6562): 1523-1527. |
135 | ORR D J, WORRALL D, LIN M T, et al. Hybrid cyanobacterial-tobacco Rubisco supports autotrophic growth and procarboxysomal aggregation[J]. Plant Physiology, 2020, 182(2): 807-818. |
136 | YASIN M, JEONG Y, PARK S, et al. Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations[J]. Bioresource Technology, 2015, 177: 361-374. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[3] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[4] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[5] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[6] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[7] | 舒斌, 陈建宏, 熊健, 吴其荣, 喻江涛, 杨平. 碳中和目标下推动绿色甲醇发展的必要性分析[J]. 化工进展, 2023, 42(9): 4471-4478. |
[8] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[9] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[10] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[11] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[12] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[13] | 薛凯, 王帅, 马金鹏, 胡晓阳, 种道彤, 王进仕, 严俊杰. 工业园区分布式综合能源系统的规划与调度[J]. 化工进展, 2023, 42(7): 3510-3519. |
[14] | 吕超, 张习文, 金理健, 杨林军. 新型两相吸收剂-离子液体系统高效捕获CO2[J]. 化工进展, 2023, 42(6): 3226-3232. |
[15] | 顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |