化工进展 ›› 2022, Vol. 41 ›› Issue (S1): 307-317.DOI: 10.16085/j.issn.1000-6613.2022-0194
尹爽1(), 梁伟杰2, 陈沛嘉3, 张志聪3, 葛建芳3()
收稿日期:
2022-02-06
修回日期:
2022-03-28
出版日期:
2022-10-20
发布日期:
2022-11-10
通讯作者:
葛建芳
作者简介:
尹爽(1999—),男,硕士研究生,研究方向为环境友好型材料。E-mail:yins105@zhku.edu.cn。
基金资助:
YIN Shuang1(), LIANG Weijie2, CHEN Peijia3, ZHANG Zhicong3, GE Jianfang3()
Received:
2022-02-06
Revised:
2022-03-28
Online:
2022-10-20
Published:
2022-11-10
Contact:
GE Jianfang
摘要:
随着人们环保意识的提高,可生物降解塑料逐步取代部分不可降解塑料,将成为一个趋势。目前,聚己二酸丁二醇酯-共对苯二甲酸酯(PBAT),作为最具商业潜力的可生物降解塑料,具有与低密度聚乙烯相当的延展性和柔韧性,被普遍认为是当代绿色材料制造中最有前途和最受欢迎的可持续材料之一。但PBAT在力学性能、热性能、阻隔性能及生产成本等方面存在不足,其应用范围受到限制。本文旨在系统性地简述近年来PBAT基复合材料的制备方法、回顾国内外研究人员在PBAT力学性能和阻隔性能等提升方面所做的工作、并详细介绍和讨论PBAT的降解原理和降解所带来的环境风险。开发低成本综合性能优异,兼顾良好降解性、抑菌性和耐久性能的PBAT基复合材料,应当予以重视和进一步研究。
中图分类号:
尹爽, 梁伟杰, 陈沛嘉, 张志聪, 葛建芳. 聚己二酸丁二醇酯-共对苯二甲酸酯基可降解塑料改性研究进展[J]. 化工进展, 2022, 41(S1): 307-317.
YIN Shuang, LIANG Weijie, CHEN Peijia, ZHANG Zhicong, GE Jianfang. Research progress on modification of PBAT-base biodegradable plastics[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 307-317.
标准号 | 标准名称 |
---|---|
GB/T 18006.2—1999 | 一次性可降解餐饮具降解性能试验方法 |
GB/T 19275—2003 | 材料在特定微生物作用下潜在生物分解和崩解能力的评价 |
GB/T 19276.1—2003 | 水性培养液中材料最终需氧生物分解能力的测定 采用测定密闭呼吸计中需氧量的方法 |
GB/T 19276.2—2003 | 水性培养液中材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 |
GB/T 19811—2005 | 在定义堆肥化中试条件下塑料材料崩解程度的测定 |
GB/T 22047—2008 | 土壤中塑料材料最终需氧生物分解能力的测定 采用测定密闭呼吸计中需氧量或测定释放的二氧化碳的方法 |
GB/T 19277.1—2011 | 受控堆肥条件下材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 第1部分:通用方法 |
GB/T 19277.2—2013 | 受控堆肥条件下材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 第2部分:用重量分析法测定实验室条件下二氧化碳的释放量 |
GB/T 32106—2015 | 塑料在水性培养液中最终厌氧生物分解能力的测定 通过测量生物气体产物的方法 |
GB/T 33797—2017 | 塑料 在高固体份堆肥条件下最终厌氧生物分解能力的测定 采用分析测定释放生物气体的方法 |
GB/T 17603—2017 | 光解性塑料户外暴露试验方法 |
GB/T 38737—2020 | 塑料 受控污泥消化系统中材料最终厌氧生物分解率测定 采用测量释放生物气体的方法 |
表1 中国可降解材料测试标准
标准号 | 标准名称 |
---|---|
GB/T 18006.2—1999 | 一次性可降解餐饮具降解性能试验方法 |
GB/T 19275—2003 | 材料在特定微生物作用下潜在生物分解和崩解能力的评价 |
GB/T 19276.1—2003 | 水性培养液中材料最终需氧生物分解能力的测定 采用测定密闭呼吸计中需氧量的方法 |
GB/T 19276.2—2003 | 水性培养液中材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 |
GB/T 19811—2005 | 在定义堆肥化中试条件下塑料材料崩解程度的测定 |
GB/T 22047—2008 | 土壤中塑料材料最终需氧生物分解能力的测定 采用测定密闭呼吸计中需氧量或测定释放的二氧化碳的方法 |
GB/T 19277.1—2011 | 受控堆肥条件下材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 第1部分:通用方法 |
GB/T 19277.2—2013 | 受控堆肥条件下材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 第2部分:用重量分析法测定实验室条件下二氧化碳的释放量 |
GB/T 32106—2015 | 塑料在水性培养液中最终厌氧生物分解能力的测定 通过测量生物气体产物的方法 |
GB/T 33797—2017 | 塑料 在高固体份堆肥条件下最终厌氧生物分解能力的测定 采用分析测定释放生物气体的方法 |
GB/T 17603—2017 | 光解性塑料户外暴露试验方法 |
GB/T 38737—2020 | 塑料 受控污泥消化系统中材料最终厌氧生物分解率测定 采用测量释放生物气体的方法 |
颁布机构 | 标准号 | 标准名称 |
---|---|---|
欧洲标准化委员会(CEN) | EN 13432 | 包装-堆肥和生物降解可回收的包装物要求-包装物最终的试验方法和评价标准 |
澳大利亚生物分解塑料协会 | AS4736 | 生物降解塑料-适合堆肥化或者其他生物处理方式的生物降解塑料 |
德国标准化学会(DIN) | DINV54900 | 通过堆肥实验检测生物降解塑料生物降解性 |
美国试验与材料协会(ASTM) | ASTM D6400 | 可堆肥化塑料规范 |
全国塑料制品标准化技术委员会 | GB/T 20197 | 降解塑料的定义、分类、标识和降解性能要求 |
表2 可生物降解产品标准
颁布机构 | 标准号 | 标准名称 |
---|---|---|
欧洲标准化委员会(CEN) | EN 13432 | 包装-堆肥和生物降解可回收的包装物要求-包装物最终的试验方法和评价标准 |
澳大利亚生物分解塑料协会 | AS4736 | 生物降解塑料-适合堆肥化或者其他生物处理方式的生物降解塑料 |
德国标准化学会(DIN) | DINV54900 | 通过堆肥实验检测生物降解塑料生物降解性 |
美国试验与材料协会(ASTM) | ASTM D6400 | 可堆肥化塑料规范 |
全国塑料制品标准化技术委员会 | GB/T 20197 | 降解塑料的定义、分类、标识和降解性能要求 |
1 | THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: where is all the plastic?[J]. Science, 2004, 304(5672): 838. |
2 | NAMBIAR S, YEOW J T W. Polymer-composite materials for radiation protection[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 5717-5726. |
3 | ATHAPATHTHU A M, THUSHARI G G N, DIAS P C B, et al. Plastics in surface water of southern coastal belt of Sri Lanka (Northern Indian Ocean): distribution and characterization by FTIR[J]. Marine Pollution Bulletin, 2020, 161(Pt A): 111750. |
4 | ERIKSEN M, LEBRETON L C M, CARSON H S, et al. Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250, 000 tons afloat at sea[J]. PLoS One, 2014, 9(12): e111913. |
5 | VERLA A W, ENYOH C E, VERLA E N, et al. Microplastic–toxic chemical interaction: a review study on quantified levels, mechanism and implication[J]. SN Applied Sciences, 2019, 1(11): 1-30. |
6 | MOHAMED N N H, KOOI M, DIEPENS N J, et al. Lifetime accumulation of microplastic in children and adults[J]. Environmental Science & Technology, 2021, 55(8): 5084-5096. |
7 | SHAH A A, HASAN F, HAMEED A, et al. Biological degradation of plastics: a comprehensive review[J]. Biotechnology Advances, 2008, 26(3): 246-265. |
8 | LI W C, TSE H F, FOK L. Plastic waste in the marine environment: a review of sources, occurrence and effects[J]. The Science of the Total Environment, 2016, 566/567: 333-349. |
9 | RYDZ Joanna, Marta MUSIOŁ, Barbara ZAWIDLAK-WĘGRZYŃSKA, et al. Biopolymers for food design: present and future of biodegradable polymers for food packaging applications[M]. Amsterdam: Elsevier, 2018: 431-467. |
10 | Racha AL-ITRY, LAMNAWAR Khalid, MAAZOUZ Abderrahim. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy[J]. Polymer Degradation and Stability, 2012, 97(10): 1898-1914. |
11 | VROMAN Isabelle, TIGHZERT Lan. Biodegradable polymers[J]. Materials, 2009, 2(2): 307-344. |
12 | RODRIGUES B V M, SILVA A S, MELO G F S, et al. Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers[J]. Materials Science & Engineering C, Materials for Biological Applications, 2016, 59: 782-791. |
13 | BORDES Perrine, POLLET Eric, Luc AVÉROUS. Nano-biocomposites: biodegradable polyester/nanoclay systems[J]. Progress in Polymer Science, 2009, 34(2): 125-155. |
14 | DAMMAK Mohamed, FOURATI Yesmine, Quim TARRÉS, et al. Blends of PBAT with plasticized starch for packaging applications: mechanical properties, rheological behaviour and biodegradability[J]. Industrial Crops and Products, 2020, 144: 112061. |
15 | 张婷, 张彩丽, 宋鑫宇, 等. PBAT薄膜的制备及应用研究进展[J]. 中国塑料, 2021, 35(7): 115-125. |
ZHANG Ting, ZHANG Caili, SONG Xinyu, et al. Research progress in preparation and applications of PBAT films[J]. China Plastics, 2021, 35(7): 115-125. | |
16 | THAKUR M K, THAKUR V K, GUPTA R K, et al. Synthesis and applications of biodegradable soy based graft copolymers: a review[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(1): 1-17. |
17 | MOUSTAFA H, YOUSSEF A M, DARWISH N A, et al. Eco-friendly polymer composites for green packaging: future vision and challenges[J]. Composites Part B: Engineering, 2019, 172: 16-25. |
18 | 付凯妹, 王红秋, 慕彦君, 等. 聚(己二酸丁二醇酯-对苯二甲酸丁二醇酯)生产技术现状及其研究进展[J]. 化工进展, 2021, 40(11): 6173-6180. |
FU Kaimei, WANG Hongqiu, MU Yanjun, et al. Status and research development of PBAT production technology[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6173-6180. | |
19 | 陈文君, 王蕾, 杨少华, 等. 以PBAT为基材的活性包装薄膜及其在食品包装中的应用研究进展[J]. 化工新型材料, 2021, 49(6): 215-221. |
CHEN Wenjun, WANG Lei, YANG Shaohua, et al. Research progress on active packaging film based on PBAT and its application in food packaging[J]. New Chemical Materials, 2021, 49(6): 215-221. | |
20 | FRANCISCO W, FERREIRA F V, FERREIRA E V, et al. Functionalization of multi-walled carbon nanotube and mechanical property of epoxy-based nanocomposite[J]. Journal of Aerospace Technology and Management, 2015, 7(3): 289-293. |
21 | 王鑫, 石敏, 余晓磊, 等. 聚己二酸对苯二甲酸丁二酯(PBAT)共混改性聚乳酸(PLA)高性能全生物降解复合材料研究进展[J]. 材料导报, 2019, 33(11): 1897-1909. |
WANG Xin, SHI Min, YU Xiaolei, et al. High performance and fully biodegradable poly (lactic acid) (PLA) composites modified by poly (butylene adipate-co-terephthalate) (PBAT): a review[J]. Materials Reports, 2019, 33(11): 1897-1909. | |
22 | Maija PÖLLÄNEN, PIRINEN Sami, SUVANTO Mika, et al. Influence of carbon nanotube-polymeric compatibilizer masterbatches on morphological, thermal, mechanical, and tribological properties of polyethylene[J]. Composites Science and Technology, 2011, 71(10): 1353-1360. |
23 | MITTAL G, DHAND V, RHEE K Y, et al. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 11-25. |
24 | MORELLI C L, BELGACEM M N, BRANCIFORTI M C, et al. Nanocomposites of PBAT and cellulose nanocrystals modified byin situpolymerization and melt extrusion[J]. Polymer Engineering & Science, 2016, 56(12): 1339-1348. |
25 | COLEMAN J N, KHAN U, BLAU W J, et al. Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites[J]. Carbon, 2006, 44(9): 1624-1652. |
26 | MARIANO Marcos, KISSI Nadia EL, DUFRESNE Alain. Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites[J]. Carbohydrate Polymers, 2016, 137: 174-183. |
27 | OKSMAN K, AITOMÄKI Y, MATHEW A P, et al. Review of the recent developments in cellulose nanocomposite processing[J]. Composites A: Applied Science and Manufacturing, 2016, 83: 2-18. |
28 | ARMENTANO Ilaria, PUGLIA Debora, LUZI Francesca, et al. Nanocomposites based on biodegradable polymers[J]. Materials, 2018, 11(5): 795. |
29 | GIOIA Claudio, GIACOBAZZI Greta, VANNINI Micaela, et al. End of life of biodegradable plastics: composting versus Re/upcycling[J]. ChemSusChem, 2021, 14(19): 4167-4175. |
30 | FUKUSHIMA K, RASYIDA A, YANG M C. Characterization, degradation and biocompatibility of PBAT based nanocomposites[J]. Applied Clay Science, 2013, 80/81: 291-298. |
31 | RUGGERO F, ONDERWATER R C A, CARRETTI Emiliano, et al. Degradation of film and rigid bioplastics during the thermophilic phase and the maturation phase of simulated composting[J]. Journal of Polymers and the Environment, 2021, 29(9): 3015-3028. |
32 | MUTHURAJ Rajendran, MISRA Manjusri, MOHANTY A K. Hydrolytic degradation of biodegradable polyesters under simulated environmental conditions[J]. Journal of Applied Polymer Science, 2015, 132(27): 42189. |
33 | Angélica DÍAZ, KATSARAVA Ramaz, Jordi PUIGGALÍ. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)S[J]. International Journal of Molecular Sciences, 2014, 15(5): 7064-7123. |
34 | 潘小虎, 李乃祥, 王雪盼, 等. 聚对苯二甲酸丁二醇酯共聚己二酸丁二醇酯热降解动力学研究[J]. 合成技术及应用, 2021, 36(4): 17-22. |
PAN Xiaohu, LI Naixiang, WANG Xuepan, et al. Kinetics of thermal degradation for PBAT[J]. Synthetic Technology & Application, 2021, 36(4): 17-22. | |
35 | LA MANTIA F P, MORREALE M, BOTTA L, et al. Degradation of polymer blends: a brief review[J]. Polymer Degradation and Stability, 2017, 145: 79-92. |
36 | KANZAWA Takeshi, TOKUMITSU Katsuhisa. Mechanical properties and morphological changes of poly(lactic acid)/polycarbonate/poly(butylene adipate-co-terephthalate) blend through reactive processing[J]. Journal of Applied Polymer Science, 2011, 121(5): 2908-2918. |
37 | HERRERA Ricard, FRANCO Lourdes, Alfonso RODRÍGUEZ-GALÁN, et al. Characterization and degradation behavior of poly(butylene adipate-co-terephthalate)S[J]. Journal of Polymer Science A: Polymer Chemistry, 2002, 40(23): 4141-4157. |
38 | 管彤晖, 付烨, 翁云宣. PBAT全生物降解地膜在土壤试验中的降解行为研究[J]. 中国塑料, 2022, 36(1): 67-72. |
GUAN Tonghui, FU Ye, WENG Yunxuan. Degradation behaviors of PBAT biodegradable mulch in soil[J]. China Plastics, 2022, 36(1): 67-72. | |
39 | SOMEYA Yoshihiro, KONDO Naoto, SHIBATA Mitsuhiro. Biodegradation of poly(butylene adipate-co-butylene terephthalate)/layered-silicate nanocomposites[J]. Journal of Applied Polymer Science, 2007, 106(2): 730-736. |
40 | 尹玉霞, 楚云松. 改性植物纤维增强PBAT复合材料的性能研究[J]. 塑料科技, 2021, 49(10): 17-20. |
YIN Yuxia, CHU Yunsong. Study on properties of modified plant fiber reinforced PBAT composites[J]. Plastics Science and Technology, 2021, 49(10): 17-20. | |
41 | LEE S H, LIM S W, LEE K H. Properties of potentially biodegradable copolyesters of (succinic acid-1, 4-butanediol)/(dimethyl terephthalate-1, 4-butanediol)[J]. Polymer International, 1999, 48(9): 861-867. |
42 | NAMPOOTHIRI K M, NAIR N R, JOHN R P. An overview of the recent developments in polylactide (PLA) research[J]. Bioresource Technology, 2010, 101(22): 8493-8501. |
43 | FERREIRA F V, PINHEIRO I F, GOUVEIA R F, et al. Functionalized cellulose nanocrys tals as reinforcement in biodegradable polymer nanocomposites[J]. Polymer Composites, 2018, 39: E9-E29. |
44 | NATTERODT J C, SAPKOTA J, FOSTER E J, et al. Polymer nanocomposites with cellulose nanocrystals featuring adaptive surface groups[J]. Biomacromolecules, 2017, 18(2): 517-525. |
45 | BARBOSA R F S, SOUZA A G, ROSA D S. Acetylated cellulose nanostructures as reinforcement materials for PBAT nanocomposites[J]. Polymer Composites, 2020, 41(7): 2841-2854. |
46 | ZHANG Xuzhen, MA Piming, ZHANG Yong. Structure and properties of surface-acetylated cellulose nanocrystal/poly(butylene adipate-co-terephthalate) composites[J]. Polymer Bulletin, 2016, 73(7): 2073-2085. |
47 | ZHANG Chenhao, CHEN Fangping, MENG Wei, et al. Polyurethane prepolymer-modified high-content starch-PBAT films[J]. Carbohydrate Polymers, 2021, 253: 117168. |
48 | BITTMANN Birgit, BOUZA Rebeca, BARRAL Luis, et al. Nanoclay-reinforced poly(butylene adipate-co-terephthalate) biocomposites for packaging applications[J]. Polymer Composites, 2012, 33(11): 2022-2028. |
49 | FUKUSHIMA K, WU M H, BOCCHINI S, et al. PBAT based nanocomposites for medical and industrial applications[J]. Materials Science and Engineering C, 2012, 32(6): 1331-1351. |
50 | FUKUSHIMA Kikku, RASYIDA Amaliya, YANG Ming Chien. Biocompatibility of organically modified nanocomposites based on PBAT[J]. Journal of Polymer Research, 2013, 20(11): 1-12. |
51 | SHI Nan, CAI Jun, DOU Qiang. Crystallization, morphology and mechanical properties of PLA/PBAT/CaCO3 composites[J]. Advanced Materials Research, 2012, 602/603/604: 768-771. |
52 | DE CD NUNES E, DE SOUZA A G, ROSA D S. Use of a chain extender as a dispersing agent of the CaCO3 into PBAT matrix[J]. Journal of Composite Materials, 2020, 54(10): 1373-1382. |
53 | MENG D, XIE J Z, WATERHOUSE G I N, et al. Biodegradable poly(butylene adipate-co-terephthalate) composites reinforced with bio-based nanochitin: preparation, enhanced mechanical and thermal properties[J]. Journal of Applied Polymer Science, 2020, 137(12): 48485. |
54 | XIONG Shaojun, PANG Bo, ZHOU Sijie, et al. Economically competitive biodegradable PBAT/lignin composites: Effect of lignin methylation and compatibilizer[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(13): 5338-5346. |
55 | MALINOWSKI Rafał, KRASOWSKA Katarzyna, SIKORSKA Wanda, et al. Studies on manufacturing, mechanical properties and structure of poly(butylene adipate-co-terephthalate)-based green composites modified by coconut fibers[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2020, 7(6): 1095-1105. |
56 | YANG Fang, QIU Zhaobin. Preparation, crystallization, and properties of biodegradable poly(butylene adipate-co-terephthalate)/organomodified montmorillonite nanocomposites[J]. Journal of Applied Polymer Science, 2011, 119(3): 1426-1434. |
57 | LIN N, HUANG J, CHANG P R, et al. Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid)[J]. Carbohydrate Polymers, 2011, 83(4): 1834-1842. |
58 | FERREIRA F V, FRANCISCO W, MENEZES B R C, et al. Correlation of surface treatment, dispersion and mechanical properties of HDPE/CNT nanocomposites[J]. Applied Surface Science, 2016, 389: 921-929. |
59 | CAMARERO-ESPINOSA S, BODAY D J, WEDER C, et al. Cellulose nanocrystal driven crystallization of poly(d, l-lactide) and improvement of the thermomechanical properties[J]. Journal of Applied Polymer Science, 2015, 132(10): 41607. |
60 | MORELLI C L, BELGACEM M N, BRANCIFORTI M C, et al. Supramolecular aromatic interactions to enhance biodegradable film properties through incorporation of functionalized cellulose nanocrystals[J]. Composites A: Applied Science and Manufacturing, 2016, 83: 80-88. |
61 | FERREIRA F V, FRANCESCHI W, MENEZES B R C, et al. Dodecylamine functionalization of carbon nanotubes to improve dispersion, thermal and mechanical properties of polyethylene based nanocomposites[J]. Applied Surface Science, 2017, 410: 267-277. |
62 | PAN Hongwei, HAO Yanping, ZHAO Yan, et al. Improved mechanical properties, barrier properties and degradation behavior of poly(butylenes adipate-co-terephthalate)/poly(propylene carbonate) films[J]. Korean Journal of Chemical Engineering, 2017, 34(5): 1294-1304. |
63 | LI Jiaxu, WANG Songlin, LAI Lei, et al. Synergistic enhancement of gas barrier and aging resistance for biodegradable films with aligned graphene nanosheets[J]. Carbon, 2021, 172: 31-40. |
64 | WEI Dafu, WANG Hao, ZIAEE Zainab, et al. Non-leaching antimicrobial biodegradable PBAT films through a facile and novel approach[J]. Materials Science & Engineering C: Materials for Biological Applications, 2016, 58: 986-991. |
65 | WANG Hao, WEI Dafu, ZHENG Anna, et al. Soil burial biodegradation of antimicrobial biodegradable PBAT films[J]. Polymer Degradation and Stability, 2015, 116: 14-22. |
66 | MONDAL Dibyendu, BHOWMICK Biplab, MAITY Dipanwita, et al. Investigation on sodium benzoate release from poly(butylene adipate-co-terephthalate)/organoclay/sodium benzoate based nanocomposite film and their antimicrobial activity[J]. Journal of Food Science, 2015, 80(3): E602-E609. |
[1] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[2] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[3] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[4] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[5] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[6] | 吴锋振, 刘志炜, 谢文杰, 游雅婷, 赖柔琼, 陈燕丹, 林冠烽, 卢贝丽. 生物质基铁/氮共掺杂多孔炭的制备及其活化过一硫酸盐催化降解罗丹明B[J]. 化工进展, 2023, 42(6): 3292-3301. |
[7] | 杨红梅, 高涛, 鱼涛, 屈撑囤, 高家朋. 高铁酸盐处理难降解有机物磺化酚醛树脂[J]. 化工进展, 2023, 42(6): 3302-3308. |
[8] | 吕学东, 罗发亮, 林海涛, 宋丹青, 刘义, 牛瑞雪, 郑柳春. 聚丁二酸丁二醇酯的合成工艺及气体阻隔性最新进展[J]. 化工进展, 2023, 42(5): 2546-2554. |
[9] | 蔡举艳, 苏琼, 王彦斌, 王鸿灵, 梁俊玺, 王忠旭, 郭丽, 赵利斌. 可生物降解泡沫材料的研究进展[J]. 化工进展, 2023, 42(3): 1457-1470. |
[10] | 李光文, 华渠成, 黄作鑫, 达志坚. 聚甲基丙烯酸酯类黏度指数改进剂的研究进展[J]. 化工进展, 2023, 42(3): 1562-1571. |
[11] | 多佳, 姚国栋, 王英霁, 曾旭, 金滨滨. 改性Au-TiO2光降解废水中诺氟沙星的影响[J]. 化工进展, 2023, 42(2): 624-630. |
[12] | 章萍萍, 丁书海, 高晶晶, 赵敏, 俞海祥, 刘玥宏, 谷麟. 碳量子点修饰半导体复合光催化剂降解水中有机污染物[J]. 化工进展, 2023, 42(10): 5487-5500. |
[13] | 张大洲, 卢文新, 商宽祥, 胡媛, 朱凡, 张宗飞. 草酸二甲酯加氢制乙醇酸甲酯反应网络分析及其多相加氢催化剂研究进展[J]. 化工进展, 2023, 42(1): 204-214. |
[14] | 刘海成, 孟无霜, 黄哲, 尤雨, 花瑞琪, 曹梦茹. WO3/BiOCl0.7I0.3光催化剂的制备及其光催化降解机理[J]. 化工进展, 2023, 42(1): 255-264. |
[15] | 刘雅娟. 浸没式PAC-AMBRs系统中PAC缓解膜污染的研究进展[J]. 化工进展, 2023, 42(1): 457-468. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |