化工进展 ›› 2022, Vol. 41 ›› Issue (9): 4595-4604.DOI: 10.16085/j.issn.1000-6613.2021-2464
收稿日期:
2021-12-01
修回日期:
2022-01-26
出版日期:
2022-09-25
发布日期:
2022-09-27
通讯作者:
徐立军
作者简介:
胡兵(1985—),男,硕士,副教授,主要研究领域为可再生能源能量优化、储能系统建模等。E-mail: hb2003042121@163.com。
基金资助:
HU Bing1(), XU Lijun2(), HE Shan3, SU Xin2, WANG Jiwei1
Received:
2021-12-01
Revised:
2022-01-26
Online:
2022-09-25
Published:
2022-09-27
Contact:
XU Lijun
摘要:
氢能作为重要的能源载体,燃烧过程绿色无污染,能够助力碳达峰和碳中和目标实现。本文通过对比化石能源制氢、工业副产气制氢、电解水制氢等方式,分析各制氢方式的优缺点,阐述了质子交换膜(PEM)电解水制氢与可再生能源结合的重要意义。之后从PEM电解槽内部结构和可再生能源电解水制氢两个方面展开综述,详细介绍了PEM电解槽双极板、催化剂、扩散层、质子交换膜研究进展、存在的主要问题和未来发展方向。文中通过分析我国太阳能、风能分布特征,总结可再生能源利用存在的问题,从研究现状和产业发展的角度介绍了太阳能制氢、风电制氢、可再生能源多能互补制氢的发展。最后对可再生能源PEM电解水制氢的未来发展方向进行了展望,期望为可再生能源PEM电解水制氢的发展提供借鉴和参考。
中图分类号:
胡兵, 徐立军, 何山, 苏昕, 汪继伟. 碳达峰与碳中和目标下PEM电解水制氢研究进展[J]. 化工进展, 2022, 41(9): 4595-4604.
HU Bing, XU Lijun, HE Shan, SU Xin, WANG Jiwei. Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon peak and carbon neutrality[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4595-4604.
制氢方法 | 优点 | 缺点 | 效率/% |
---|---|---|---|
天然气水蒸气重整 | 技术成熟、大规模、商业化程度高 | 产生CO2、供应不稳定、能耗高、设备贵 | 74~78 |
天然气部分氧化 | 技术成熟、能耗低、可自热反应 | 不易控制、制氧能耗大、设备贵 | 60~75 |
天然气催化裂解 | 无温室气体排放、氢气纯度高 | 反应温度高、催化剂易积炭失活 | 70~87 |
天然气自热重整 | 能耗低、氢浓度高、反应温度低 | 商业应用有限、需要氧气 | 60~75 |
表1 天然气制氢技术对比
制氢方法 | 优点 | 缺点 | 效率/% |
---|---|---|---|
天然气水蒸气重整 | 技术成熟、大规模、商业化程度高 | 产生CO2、供应不稳定、能耗高、设备贵 | 74~78 |
天然气部分氧化 | 技术成熟、能耗低、可自热反应 | 不易控制、制氧能耗大、设备贵 | 60~75 |
天然气催化裂解 | 无温室气体排放、氢气纯度高 | 反应温度高、催化剂易积炭失活 | 70~87 |
天然气自热重整 | 能耗低、氢浓度高、反应温度低 | 商业应用有限、需要氧气 | 60~75 |
副产类别 | 工艺名称 | 生产方式 | 生产原理 |
---|---|---|---|
炼焦副产 | 湿法熄焦 | 冷水喷淋对焦炭降温 | 高温水煤气反应 |
干法熄焦 | 循环氮气降温 | 煤中少量氢裂解生成氢气 | |
氯碱副产 | 电解法制碱及氯气 | 电解饱和氯化钠溶液 | 正电荷氢离子向阴极移动,氢气从阴极析出 |
甲醇副产 | 合成法 | 先制备含氢合成气,再合成甲醇 | 未反应氢气从尾气释放 |
合成氨副产 | 联醇法 | 利用合成氨生产环节剩余氢气合成甲醇 | 含氢驰放气进入合成氨生产环节 |
合成法 | 先制备含氢合成气,再制备合成氨 | 未反应氢气从尾气释放 | |
丙烷脱氢 | 催化脱氢 | 循环流化床或固定床反应器中脱氢 | 烷烃在高温催化下脱氢形成烯烃和氢气 |
表2 副产气汇总表[8]
副产类别 | 工艺名称 | 生产方式 | 生产原理 |
---|---|---|---|
炼焦副产 | 湿法熄焦 | 冷水喷淋对焦炭降温 | 高温水煤气反应 |
干法熄焦 | 循环氮气降温 | 煤中少量氢裂解生成氢气 | |
氯碱副产 | 电解法制碱及氯气 | 电解饱和氯化钠溶液 | 正电荷氢离子向阴极移动,氢气从阴极析出 |
甲醇副产 | 合成法 | 先制备含氢合成气,再合成甲醇 | 未反应氢气从尾气释放 |
合成氨副产 | 联醇法 | 利用合成氨生产环节剩余氢气合成甲醇 | 含氢驰放气进入合成氨生产环节 |
合成法 | 先制备含氢合成气,再制备合成氨 | 未反应氢气从尾气释放 | |
丙烷脱氢 | 催化脱氢 | 循环流化床或固定床反应器中脱氢 | 烷烃在高温催化下脱氢形成烯烃和氢气 |
制氢方法 | 优点 | 缺点 | 电解效率/% | 工作温度/℃ | 纯度/% |
---|---|---|---|---|---|
碱性电解水 | 结构简单、技术成熟、非贵金属催化剂、成本低、商业化程度高 | 电解液泄漏污染环境、石棉隔膜致癌、动态响应差、电流密度有限 | 52~82 | 60~80 | 99.5~99.9 |
质子交换膜电解水 | 结构紧凑、恒定电解质浓度、波动能源适应性强、冷启动快 | 成本高、商业化程度低、功耗较高、催化剂易被金属离子毒化 | 74~87 | 50~80 | >99.999 |
固体氧化物电解水 | 效率高、非贵金属催化剂、转化效率高 | 需要额外热源、高温条件增加成本、启动慢、高温下材料易老化 | 85~100 | 700~1000 | >99.9999 |
表3 电解水制氢技术对比
制氢方法 | 优点 | 缺点 | 电解效率/% | 工作温度/℃ | 纯度/% |
---|---|---|---|---|---|
碱性电解水 | 结构简单、技术成熟、非贵金属催化剂、成本低、商业化程度高 | 电解液泄漏污染环境、石棉隔膜致癌、动态响应差、电流密度有限 | 52~82 | 60~80 | 99.5~99.9 |
质子交换膜电解水 | 结构紧凑、恒定电解质浓度、波动能源适应性强、冷启动快 | 成本高、商业化程度低、功耗较高、催化剂易被金属离子毒化 | 74~87 | 50~80 | >99.999 |
固体氧化物电解水 | 效率高、非贵金属催化剂、转化效率高 | 需要额外热源、高温条件增加成本、启动慢、高温下材料易老化 | 85~100 | 700~1000 | >99.9999 |
1 | SIEGERT Martin, ALLEY Richard B, RIGNOT Eric, et al. Twenty-first century sea-level rise could exceed IPCC projections for strong-warming futures[J]. One Earth, 2020, 3(6): 691-703. |
2 | SCHURER Andrew P, MANN Michael E, HAWKINS Ed, et al. Importance of the pre-industrial baseline for likelihood of exceeding Paris goals[J]. Nature Climate Change, 2017, 7(8): 563-567. |
3 | MILLAR Richard J, FUGLESTVEDT Jan S, FRIEDLINGSTEIN Pierre, et al. Emission budgets and pathways consistent with limiting warming to 1.5℃[J]. Nature Geoscience, 2017, 10(10): 741-747. |
4 | WANG Yinglong, LI Guoxuan, LIU Zhiqiang, et al. Techno-economic analysis of biomass-to-hydrogen process in comparison with coal-to-hydrogen process[J]. Energy, 2019, 185: 1063-1075. |
5 | Shiva KUMAR S, HIMABINDU V. Hydrogen production by PEM water electrolysis—A review[J]. Materials Science for Energy Technologies, 2019, 2(3): 442-454. |
6 | TAO Ming, CHENG Wenqing, NIE Kemi, et al. Life cycle assessment of underground coal mining in China[J]. The Science of the Total Environment, 2022, 805: 150231. |
7 | SADATI S, VOUSOUGHI P, EYVAZI M. Hydrogen production: Overview of technology options and membrane in auto-thermal reforming including partial oxidation and steam reforming[J]. International Journal of Membrane Science and Technology, 2015, 2(1): 56-67. |
8 | 徐双庆, 顾阿伦, 陈熹. 正本清源“副产氢”[J]. 中国经贸导刊, 2020(12): 109-111. |
XU Shuangqing, GU Alun, CHEN Xi. Radically reform:byproduct-hydrogen [J]. China Economic & Trade Herald, 2020(12): 109-111. | |
9 | CIPRIANI Giovanni, DI DIO Vincenzo, GENDUSO Fabio, et al. Perspective on hydrogen energy carrier and its automotive applications[J]. International Journal of Hydrogen Energy, 2014, 39(16): 8482-8494. |
10 | CHI Jun, YU Hongmei. Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39(3): 390-394. |
11 | BOSIO K. Technical and economic analysis of state-of-the-art electrolytic systems for hydrogen production [D]. di Torino : Politecnico di Torino, 2021. |
12 | CAO Shuang, WANG Chuanjun, FU Wenfu, et al. Metal phosphides as co-catalysts for photocatalytic and photoelectrocatalytic water splitting[J]. ChemSusChem, 2017, 10(22): 4306-4323. |
13 | Abe RYU. Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2010, 11(4): 179-209. |
14 | NI M, LEUNG D Y C, LEUNG M K H, et al. An overview of hydrogen production from biomass[J]. Fuel Processing Technology, 2006, 87(5): 461-472. |
15 | PANCHENKO Olha, BORGARDT Elena, ZWAYGARDT Walter, et al. In-situ two-phase flow investigation of different porous transport layer for a polymer electrolyte membrane (PEM) electrolyzer with neutron spectroscopy[J]. Journal of Power Sources, 2018, 390: 108-115. |
16 | LETTENMEIER P, WANG R, ABOUATALLAH R, et al. Coated stainless steel bipolar plates for proton exchange membrane electrolyzers[J]. Journal of the Electrochemical Society, 2016, 163(11): F3119-F3124. |
17 | LETTENMEIER P, WANG R, ABOUATALLAH R, et al. Low-cost and durable bipolar plates for proton exchange membrane electrolyzers[J]. Scientific Reports, 2017, 7: 44035. |
18 | WAKAYAMA Hiroaki, YAMAZAKI Kiyoshi. Low-cost bipolar plates of Ti4O7-coated Ti for water electrolysis with polymer electrolyte membranes[J]. ACS Omega, 2021, 6(6): 4161-4166. |
19 | TEUKU Husaini, ALSHAMI Ibrahim, Jonathan GOH, et al. Review on bipolar plates for low-temperature polymer electrolyte membrane water electrolyzer[J]. International Journal of Energy Research, 2021, 45(15): 20583-20600. |
20 | SONG Yuxi, ZHANG Caizhi, LING Chunyu, et al. Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(54): 29832-29847. |
21 | 郭博文, 罗聃, 周红军. 可再生能源电解制氢技术及催化剂的研究进展[J]. 化工进展, 2021, 40(6): 2933-2951. |
GUO Bowen, LUO Dan, ZHOU Hongjun. Recent advances in renewable energy electrolysis hydrogen production technology and related electrocatalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2933-2951. | |
22 | BERNT Maximilian, Alexandra HARTIG-WEIß, TOVINI Mohammad Fathi, et al. Current challenges in catalyst development for PEM water electrolyzers[J]. Chemie Ingenieur Technik, 2020, 92(1/2): 31-39. |
23 | KING Laurie A, HUBERT McKenzie A, CAPUANO Christopher, et al. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser[J]. Nature Nanotechnology, 2019, 14(11): 1071-1074. |
24 | SUNG Chia Chi, LIU Chaoyang. A novel micro protective layer applied on a simplified PEM water electrolyser[J]. International Journal of Hydrogen Energy, 2013, 38(24): 10063-10067. |
25 | KHATIB F N, WILBERFORCE Tabbi, IJAODOLA Oluwatosin, et al. Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: a review[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 1-14. |
26 | BYSTRON T, VESELY M, PAIDAR M, et al. Enhancing PEM water electrolysis efficiency by reducing the extent of Ti gas diffusion layer passivation[J]. Journal of Applied Electrochemistry, 2018, 48(6): 713-723. |
27 | ROZAIN Caroline, MAYOUSSE Eric, GUILLET Nicolas, et al. Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: part I-pure IrO2-based anodes[J]. Applied Catalysis B: Environmental, 2016, 182: 153-160. |
28 | MA Xiao, ZHANG Xiaoqing, YANG Jiapei, et al. Impact of gas diffusion layer spatial variation properties on water management and performance of PEM fuel cells[J]. Energy Conversion and Management, 2021, 227: 113579. |
29 | OMRANI Reza, SHABANI Bahman. Gas diffusion layer modifications and treatments for improving the performance of proton exchange membrane fuel cells and electrolysers: a review[J]. International Journal of Hydrogen Energy, 2017, 42(47): 28515-28536. |
30 | YANG Yange, ZHOU Xiangyang, LI Bing, et al. Recent progress of the gas diffusion layer in proton exchange membrane fuel cells: material and structure designs of microporous layer[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4259-4282. |
31 | TEIXEIRA Fátima C, DE SÁ Ana I, TEIXEIRA António P S, et al. New modified Nafion-bisphosphonic acid composite membranes for enhanced proton conductivity and PEMFC performance[J]. International Journal of Hydrogen Energy, 2021, 46(33): 17562-17571. |
32 | KARIMI Mohammad Bagher, MOHAMMADI Fereidoon, HOOSHYARI Khadijeh. Recent approaches to improve Nafion performance for fuel cell applications: a review[J]. International Journal of Hydrogen Energy, 2019, 44(54): 28919-28938. |
33 | ESMAEILI Nazila, GRAY Evan MacA, WEBB Colin J. Non-fluorinated polymer composite proton exchange membranes for fuel cell applications—A review[J]. ChemPhysChem, 2019, 20(16): 2016-2053. |
34 | 严陆光. 我国大规模可再生能源基地与技术的发展研究[J]. 电器工业, 2008(1): 24-33. |
YAN Luguang. Development and research for the base and technology of large scale renewable energy sources in our County[J]. China Electrical Equipment Industry, 2008(1): 24-33. | |
35 | GARCÍA-VALVERDE R, MIGUEL C, MARTÍNEZ-BÉJAR R, et al. Optimized photovoltaic generator-water electrolyser coupling through a controlled DC-DC converter[J]. International Journal of Hydrogen Energy, 2008, 33(20): 5352-5362. |
36 | CLARKE R E, GIDDEY S, CIACCHI F T, et al. Direct coupling of an electrolyser to a solar PV system for generating hydrogen[J]. International Journal of Hydrogen Energy, 2009, 34(6): 2531-2542. |
37 | MOHAMMADI Amin, MEHRPOOYA Mehdi. A comprehensive review on coupling different types of electrolyzer to renewable energy sources[J]. Energy, 2018, 158: 632-655. |
38 | SHARIFIAN Seyedmehdi, ASASIAN KOLUR Neda, HARASEK Michael. Transient simulation and modeling of photovoltaic-PEM water electrolysis[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, 42(9): 1097-1107. |
39 | GANJEHSARABI Hadi. Performance assessment of solar-powered high pressure proton exchange membrane electrolyzer: a case study for Erzincan[J]. International Journal of Hydrogen Energy, 2019, 44(20): 9701-9707. |
40 | BEHZADI Amirmohammad, HABIBOLLAHZADE Ali, AHMADI Pouria, et al. Multi-objective design optimization of a solar based system for electricity, cooling, and hydrogen production[J]. Energy, 2019, 169: 696-709. |
41 | MALI Bijen, NIRAULA Dayasagar, KAFLE Ranjeet, et al. Green hydrogen: production methodology, applications and challenges in Nepal[C]//2021 7th International Conference on Engineering, Applied Sciences and Technology (ICEAST). April 1-3, 2021, Pattaya, Thailand. IEEE, 2021: 68-76. |
42 | 黎嘉怡. 2021年化工行业大事记[J]. 广州化工, 2022, 50(1): 1-4. |
LI Jiayi. Chemical industry events in 2021[J]. Guangzhou Chemical Industry, 2022, 50(1): 1-4. | |
43 | 朱蓉, 王阳, 向洋, 等. 中国风能资源气候特征和开发潜力研究[J]. 太阳能学报, 2021, 42(6): 409-418. |
ZHU Rong, WANG Yang, XIANG Yang, et al. Stydy on climate characteristics and development potential of wind energy resources in China[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 409-418. | |
44 | 曹蕃, 郭婷婷, 陈坤洋, 等. 风电耦合制氢技术进展与发展前景[J]. 中国电机工程学报, 2021, 41(6): 2187-2201. |
CAO Fan, GUO Tingting, CHEN Kunyang, et al. Progress and development prospect of coupled wind and hydrogen systems[J]. Proceedings of the CSEE, 2021, 41(6): 2187-2201. | |
45 | MUYEEN S M, TAKAHASHI R, TAMURA J. Electrolyzer switching strategy for hydrogen generation from variable speed wind generator[J]. Electric Power Systems Research, 2011, 81(5): 1171-1179. |
46 | Raúl SARRIAS-MENA, FERNÁNDEZ-RAMÍREZ Luis M, GARCÍA-VÁZQUEZ Carlos Andrés, et al. Electrolyzer models for hydrogen production from wind energy systems[J]. International Journal of Hydrogen Energy, 2015, 40(7): 2927-2938. |
47 | CARR S, ZHANG F, THANAPALAN K, et al. Control and simulation of a stand-alone wind-hydrogen generation system[J]. Renewable Energy and Power Quality Journal, 2013: 483-488. |
48 | NAZIRY KORDKANDY M, ARASH A, NAZARY KORDKANDY M. Hydrogen gas production in a stand-alone wind farm[J]. Engineering, Technology & Applied Science Research, 2017, 7(2): 1444-1449. |
49 | HE Aishan, YAN Zhuoyong, GU Weidong. Research on non-grid-connected wind power systems used for hydrogen production from water-electrolytic[C]//2009 World Non-Grid-Connected Wind Power and Energy Conference. September 24-26, 2009, Nanjing, China. IEEE, 2009: 1-5. |
50 | MOHSIN M, RASHEED A K, SAIDUR R. Economic viability and production capacity of wind generated renewable hydrogen[J]. International Journal of Hydrogen Energy, 2018, 43(5): 2621-2630. |
51 | JING Kai, LIU Chang, CAO Xin, et al. Analysis, modeling and control of a non-grid-connected source-load collaboration wind-hydrogen system[J]. Journal of Electrical Engineering & Technology, 2021, 16(5): 2355-2365. |
52 | MELDAHL L L. A clean hydrogen market in the making. Comparing Norway’s and the Netherland’s roles in the European hydrogen transition[D]. Trondheim: Norwegian University of Science and Technology, 2021. |
53 | KASPAR Frank, BORSCHE Michael, PFEIFROTH Uwe, et al. A climatological assessment of balancing effects and shortfall risks of photovoltaics and wind energy in Germany and Europe[J]. Advances in Science and Research, 2019, 16: 119-128. |
54 | SHI Xiaofei, QIAN Yu, YANG Siyu. Fluctuation analysis of a complementary wind-solar energy system and integration for large scale hydrogen production[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 7097-7110. |
55 | WANG Qinghua, LIU Jizhen, HU Yang, et al. Optimal operation strategy of multi-energy complementary distributed CCHP system and its application on commercial building[J]. IEEE Access, 2019, 7: 127839-127849. |
56 | ZAHEDI Ali Reza, LABBAFI Sina, GHAFFARINEZHAD Ali, et al. Design, construction and performance of a quintuple renewable hybrid system of wind/geothermal/biomass/solar/hydro plus fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(9): 6206-6224. |
57 | WANG Liying, ZENG Ming, CAO Yuwei, et al. Research on operation strategy optimization method of multi-energy complementary new energy generation system[J]. IOP Conference Series: Materials Science and Engineering, 2019, 677(3): 032027. |
58 | YANG Zhao, HU Junjie, AI Xin, et al. Transactive energy supported economic operation for multi-energy complementary microgrids[J]. IEEE Transactions on Smart Grid, 2021, 12(1): 4-17. |
59 | JU Liwei, LI Peng, TAN Qinliang, et al. A multi-objective scheduling optimization model for a multi-energy complementary system considering different operation strategies[J]. Applied Sciences, 2018, 8(11): 2293. |
60 | ZHANG Yusheng, LIAN Jijian, MA Chao, et al. Optimal sizing of the grid-connected hybrid system integrating hydropower, photovoltaic, and wind considering cascade reservoir connection and photovoltaic-wind complementarity[J]. Journal of Cleaner Production, 2020, 274: 123100. |
61 | PEI Huanjin, GUO Su, HE Yi, et al. Capacity optimization of concentrated solar power-photovoltaicwind power combined generation system[J]. E3S Web of Conferences, 2019, 118: 02060. |
62 | WIDERA Barbara. Renewable hydrogen as an energy storage solution[J]. E3S Web of Conferences, 2019, 116: 00097. |
[1] | 舒斌, 陈建宏, 熊健, 吴其荣, 喻江涛, 杨平. 碳中和目标下推动绿色甲醇发展的必要性分析[J]. 化工进展, 2023, 42(9): 4471-4478. |
[2] | 刘含笑, 吴黎明, 林青阳, 周烨, 罗象, 桂志军, 刘小伟, 单思珂, 朱前林, 陆诗建. 碳足迹评估技术及其在重点工业行业的应用[J]. 化工进展, 2023, 42(5): 2201-2218. |
[3] | 张巍, 王锐, 缪平, 田戈. 全球可再生能源电转甲烷的应用[J]. 化工进展, 2023, 42(3): 1257-1269. |
[4] | 陈崇明, 曾四鸣, 罗小娜, 宋国升, 韩忠阁, 郁金星, 孙楠楠. 基于超交联聚合物前体的碳载钾基CO2吸附剂制备和性能[J]. 化工进展, 2023, 42(3): 1540-1550. |
[5] | 张育新, 王灿, 舒文祥. 二氧化碳的还原及其利用研究进展[J]. 化工进展, 2023, 42(2): 944-956. |
[6] | 杨程瑞雪, 黄琪媛, 冉建速, 崔耘通, 王健健. 磷酸修饰二氧化硅负载钯催化剂用于木质素衍生物高效水相低温加氢脱氧[J]. 化工进展, 2023, 42(10): 5179-5190. |
[7] | 刘艳辉, 周明芳, 马铭, 王凯, 谭天伟. 可再生能源驱动的生物催化固定CO2的研究进展[J]. 化工进展, 2023, 42(1): 1-15. |
[8] | 姚伦, 周雍进. 一碳化合物生物利用和转化研究进展[J]. 化工进展, 2023, 42(1): 16-29. |
[9] | 王红霞, 徐婉怡, 张早校. 可再生电力电解制绿色氢能的发展现状与建议[J]. 化工进展, 2022, 41(S1): 118-131. |
[10] | 高帷韬, 殷屺男, 涂自强, 龚繁, 李阳, 徐宏, 王诚, 毛宗强. 金属有机框架材料中的质子传导及其在质子交换膜中的应用[J]. 化工进展, 2022, 41(S1): 260-268. |
[11] | 周颖, 周红军, 徐春明. 氢能的思考及发展路径判断和实践[J]. 化工进展, 2022, 41(8): 4587-4592. |
[12] | 杨学萍. 碳中和背景下现代煤化工技术路径探索[J]. 化工进展, 2022, 41(7): 3402-3412. |
[13] | 唐娇娇, 谢军祥, 陈重军, 余成, 陈德超. 城镇污水处理厂碳中和技术及案例[J]. 化工进展, 2022, 41(5): 2662-2671. |
[14] | 黄晟, 王静宇, 李振宇. 碳中和目标下石油与化学工业绿色低碳发展路径分析[J]. 化工进展, 2022, 41(4): 1689-1703. |
[15] | 梁金强, 刘丹竹, 徐庶亮, 叶茂, 刘中民. “双碳”目标下能源安全定量评价方法[J]. 化工进展, 2022, 41(3): 1622-1633. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |